[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003474
Generalized Euler phi function (for p=3).
(Formerly M3541)
4
1, 4, 18, 32, 160, 324, 1456, 2048, 13122, 25600, 117128, 209952, 913952, 2119936, 9447840, 13107200, 86093440, 172186884, 774840976, 1310720000, 6964002864, 13718968384, 62761410632, 88159684608, 557885504000, 835308258304, 5083731656658, 8988257288192, 45753584909920, 89261680665600, 411782264189296, 564050001920000
OFFSET
1,2
COMMENTS
For n >= 2, a(n) is the number of n X n circulant invertible matrices over GF(3). - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 22 2003
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. T. B. Beard Jr. and K. I. West, Factorization tables for x^n-1 over GF(q), Math. Comp., 28 (1974), 1167-1168.
MATHEMATICA
p = 3; numNormalp[n_] := Module[{r, i, pp}, pp = 1; Do[r = MultiplicativeOrder[p, d]; i = EulerPhi[d]/r; pp *= (1-1/p^r)^i, {d, Divisors[n]}]; Return[pp]]; numNormal[n_] := Module[{t, q, pp}, t=1; q=n; While[0==Mod[q, p], q /= p; t += 1]; pp = numNormalp[q]; pp *= p^n/n; Return[pp]]; a[n_] := If[n==1, 1, n*numNormal[n]]; Array[a, 40] (* Jean-François Alcover, Dec 10 2015, after Joerg Arndt *)
PROG
(PARI)
p=3; /* global */
num_normal_p(n)=
{
my( r, i, pp );
pp = 1;
fordiv (n, d,
r = znorder(Mod(p, d));
i = eulerphi(d)/r;
pp *= (1 - 1/p^r)^i;
);
return( pp );
}
num_normal(n)=
{
my( t, q, pp );
t = 1; q = n;
while ( 0==(q%p), q/=p; t+=1; );
/* here: n==q*p^t */
pp = num_normal_p(q);
pp *= p^n/n;
return( pp );
}
a(n)=if ( n==1, 1, n * num_normal(n) );
v=vector(66, n, a(n))
/* Joerg Arndt, Jul 03 2011 */
CROSSREFS
Cf. A003473 (p=2), A192037 (p=5).
Sequence in context: A346866 A363640 A053191 * A337003 A095823 A092116
KEYWORD
nonn
EXTENSIONS
Terms > 86093440 from Joerg Arndt, Jul 03 2011
STATUS
approved