[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003413
From a nim-like game.
(Formerly M0521)
1
1, 2, 3, 4, 5, 7, 9, 12, 15, 19, 24, 31, 40, 52, 67, 86, 110, 141, 181, 233, 300, 386, 496, 637, 818, 1051, 1351, 1737, 2233, 2870, 3688, 4739, 6090, 7827, 10060, 12930, 16618, 21357, 27447, 35274, 45334, 58264, 74882, 96239, 123686, 158960, 204294, 262558
OFFSET
0,2
REFERENCES
R. K. Guy, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
Recurrence: a(n) = a(n-1) + a(n-6) for n >= 8.
O.g.f.: -(x^2+x+1)*(x^5+x^3+1)/(-1+x+x^6) = -x-1+(-2-x-x^3-x^4-2*x^5)/(-1+x+x^6). - R. J. Mathar, Dec 05 2007
MAPLE
A003413:=-(z**5+z**3+1)*(z**2+z+1)/(z**6+z-1); # Simon Plouffe in his 1992 dissertation
MATHEMATICA
Join[{1, 2}, LinearRecurrence[{1, 0, 0, 0, 0, 1}, {3, 4, 5, 7, 9, 12}, 80]] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
CROSSREFS
Cf. A005708.
Sequence in context: A062188 A122129 A280909 * A100853 A174065 A121659
KEYWORD
nonn
STATUS
approved