OFFSET
1,2
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 175.
L. Comtet and M. Fiolet, Sur les dérivées successives d'une fonction implicite. C. R. Acad. Sci. Paris Ser. A 278 (1974), 249-251.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..500
L. Comtet, Letter to N. J. A. Sloane, Mar 1974.
L. Comtet and M. Fiolet, Number of terms in an nth derivative, C. R. Acad. Sc. Paris, t. 278 (21 janvier 1974), Serie A- 249-251. (Annotated scanned copy)
T. Wilde, Implicit higher derivatives and a formula of Comtet and Fiolet, arXiv:0805.2674 [math.CO], 2008.
FORMULA
The generating function given by Comtet and Fiolet is incorrect.
a(n) = coefficient of t^n*u^(n-1) in Product_{i,j>=0,(i,j)<>(0,1)} (1 - t^i*u^(i+j-1))^(-1). - Tom Wilde (tom(AT)beech84.fsnet.co.uk), Jan 19 2008
EXAMPLE
(d/dx)^2 y = -F_xx/F_y + 2*F_x*F_xy/F_y^2 - F_x^2*F_yy/F_y^3, where F_x denotes partial derivative with respect to x, etc. This has three terms, thus a(2)=3.
MATHEMATICA
p[_, _] = 0; q[_, _] = 0; e = 30; For[m = 1, m <= e - 1, m++, For[d = 1, d <= m, d++, If[m == d*Floor[m/d], For[i = 0, i <= m/d + 1, i++, If[d*i <= e, q[m, i*d] = q[m, i*d] + 1/d]]]]]; For[j = 0, j <= e, j++, p[0, j] = 1]; For[n = 1, n <= e - 1, n++, For[s = 0, s <= n, s++, For[j = 0, j <= e, j++, For[i = 0, i <= j, i++, p[n, j] = p[n, j] + (1/n)*s*q[s, j - i]*p[n - s, i]]]]]; A003262 = Table[p[n - 1, n], {n, 1, e}](* Jean-François Alcover, after Tom Wilde *)
PROG
(VBA)
' Tom Wilde, Jan 19 2008
Sub Calc_AofN_upto_E()
E = 30
ReDim p(0 To E - 1, 0 To E)
ReDim q(0 To E - 1, 0 To E)
For m = 1 To E - 1
For d = 1 To m
If m = d * Int(m / d) Then
For i = 0 To m / d + 1
If d * i <= E Then q(m, i * d) = q(m, i * d) + 1 / d
Next
End If
Next
Next
For j = 0 To E
p(0, j) = 1
Next
For n = 1 To E - 1
For s = 0 To n
For j = 0 To E
For i = 0 To j
p(n, j) = p(n, j) + 1 / n * s * q(s, j - i) * p(n - s, i)
Next
Next
Next
Next
For n = 1 To E
Debug.Print p(n - 1, n)
Next
End Sub
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
More terms from Tom Wilde (tom(AT)beech84.fsnet.co.uk), Jan 19 2008
STATUS
approved