[go: up one dir, main page]

login
A003262
Let y=f(x) satisfy F(x,y)=0. a(n) is the number of terms in the expansion of (d/dx)^n y in terms of the partial derivatives of F.
(Formerly M2791)
4
1, 3, 9, 24, 61, 145, 333, 732, 1565, 3247, 6583, 13047, 25379, 48477, 91159, 168883, 308736, 557335, 994638, 1755909, 3068960, 5313318, 9118049, 15516710, 26198568, 43904123, 73056724, 120750102, 198304922, 323685343
OFFSET
1,2
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 175.
L. Comtet and M. Fiolet, Sur les dérivées successives d'une fonction implicite. C. R. Acad. Sci. Paris Ser. A 278 (1974), 249-251.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. Comtet and M. Fiolet, Number of terms in an nth derivative, C. R. Acad. Sc. Paris, t. 278 (21 janvier 1974), Serie A- 249-251. (Annotated scanned copy)
T. Wilde, Implicit higher derivatives and a formula of Comtet and Fiolet, arXiv:0805.2674 [math.CO], 2008.
FORMULA
The generating function given by Comtet and Fiolet is incorrect.
a(n) = coefficient of t^n*u^(n-1) in Product_{i,j>=0,(i,j)<>(0,1)} (1 - t^i*u^(i+j-1))^(-1). - Tom Wilde (tom(AT)beech84.fsnet.co.uk), Jan 19 2008
EXAMPLE
(d/dx)^2 y = -F_xx/F_y + 2*F_x*F_xy/F_y^2 - F_x^2*F_yy/F_y^3, where F_x denotes partial derivative with respect to x, etc. This has three terms, thus a(2)=3.
MATHEMATICA
p[_, _] = 0; q[_, _] = 0; e = 30; For[m = 1, m <= e - 1, m++, For[d = 1, d <= m, d++, If[m == d*Floor[m/d], For[i = 0, i <= m/d + 1, i++, If[d*i <= e, q[m, i*d] = q[m, i*d] + 1/d]]]]]; For[j = 0, j <= e, j++, p[0, j] = 1]; For[n = 1, n <= e - 1, n++, For[s = 0, s <= n, s++, For[j = 0, j <= e, j++, For[i = 0, i <= j, i++, p[n, j] = p[n, j] + (1/n)*s*q[s, j - i]*p[n - s, i]]]]]; A003262 = Table[p[n - 1, n], {n, 1, e}](* Jean-François Alcover, after Tom Wilde *)
PROG
(VBA)
' Tom Wilde, Jan 19 2008
Sub Calc_AofN_upto_E()
E = 30
ReDim p(0 To E - 1, 0 To E)
ReDim q(0 To E - 1, 0 To E)
For m = 1 To E - 1
For d = 1 To m
If m = d * Int(m / d) Then
For i = 0 To m / d + 1
If d * i <= E Then q(m, i * d) = q(m, i * d) + 1 / d
Next
End If
Next
Next
For j = 0 To E
p(0, j) = 1
Next
For n = 1 To E - 1
For s = 0 To n
For j = 0 To E
For i = 0 To j
p(n, j) = p(n, j) + 1 / n * s * q(s, j - i) * p(n - s, i)
Next
Next
Next
Next
For n = 1 To E
Debug.Print p(n - 1, n)
Next
End Sub
CROSSREFS
Cf. A098504.
Cf. A172004 (generalization to bivariate implicit functions).
Cf. A162326 (analogous sequence for implicit divided differences).
Cf. A172003 (bivariate variant).
Sequence in context: A084858 A228820 A335470 * A189162 A079282 A117585
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Tom Wilde (tom(AT)beech84.fsnet.co.uk), Jan 19 2008
STATUS
approved