Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2221 #75 Oct 29 2023 01:49:37
%S 1,3,1,5,1,5,7,5,3,5,9,1,3,7,11,7,11,13,9,7,1,15,13,15,1,13,9,5,17,13,
%T 11,9,5,17,7,17,19,1,3,15,17,7,21,19,5,11,21,19,13,1,23,5,17,19,25,13,
%U 25,23,1,5,15,27,9,19,25,17,11,5,25,27,23,29,29,25,23,19,29,13,31,31
%N a(n) is the odd member of {x,y}, where x^2 + y^2 is the n-th prime of the form 4i+1.
%C a(n)^2 + 4*A002973(n)^2 = A002144(n); A002331(n+1) = Min(a(n),2*A002973(n)) and A002330(n+1) = Max(a(n),2*A002973(n)). - _Reinhard Zumkeller_, Feb 16 2010
%C It appears that the terms in this sequence are the absolute values of the terms in A046730. - _Gerry Myerson_, Dec 02 2010
%C (a(n) - 1)/2 = A208295(n), n >= 1. - _Wolfdieter Lang_, Mar 03 2012
%C a(A267858(k)) == 1 (mod 4), k >= 1. - _Wolfdieter Lang_, Feb 18 2016
%C "the n-th prime of the form 4i+1" is A005098(n). - _Rainer Rosenthal_, Aug 24 2022
%D E. Kogbetliantz and A. Krikorian, Handbook of First Complex Prime Numbers, Gordon and Breach, NY, 1971, p. 243.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Rainer Rosenthal, <a href="/A002972/b002972.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)
%H S. R. Finch, <a href="https://arxiv.org/abs/math/0701251">Powers of Euler's q-Series</a>, arXiv:math/0701251 [math.NT], 2007.
%H E. Kogbetliantz and A. Krikorian, <a href="/A002970/a002970.pdf">Handbook of First Complex Prime Numbers</a>, Gordon and Breach, NY, 1971. [Annotated scans of a few pages]
%H Stan Wagon, <a href="https://doi.org/10.2307/2323912">Editor’s Corner: The Euclidean Algorithm Strikes Again</a>, The American Mathematical Monthly, vol. 97, no. 2, 1990, pp. 125-29. [Description of efficient decomposition algorithm implemented in PARI program]
%F a(n) = Min(A173330(n), A002144(n) - A173330(n)). - _Reinhard Zumkeller_, Feb 16 2010
%e The 2nd prime of the form 4i+1 is 13 = 2^2 + 3^2, so a(2)=3.
%t pmax = 1000; odd[p_] := Module[{k, m}, 2m+1 /. ToRules[Reduce[k>0 && m >= 0 && (2k)^2 + (2m+1)^2 == p, {k, m}, Integers]]]; For[n=1; p=5, p<pmax, p = NextPrime[p], If[Mod[p, 4] == 1, a[n] = odd[p]; Print["a(", n, ") = ", a[n]]; n++]]; Array[a, n-1] (* _Jean-François Alcover_, Feb 26 2016 *)
%o (PARI) decomp2sq(p) = {my (m=(p-1)/4, r, x, limit=ceil(sqrt(p))); if (p>4 && denominator(m)==1, forprime (c=2,oo, if (!issquare(Mod(c,p)), r=c; break)); x=lift (Mod(r,p)^m); until (p<limit, r=p%x; p=x; x=r); if(p^2+x^2==4*m+1, [p,x], [0,0]), [0,0])};
%o forprime (p=5, 1000, if (p%4==1, print1(select(x->x%2,decomp2sq(p))[1],", "))) \\ _Hugo Pfoertner_, Aug 27 2022
%Y Cf. A002144, A002973, A005098, A261858.
%K nonn
%O 1,2
%A _N. J. A. Sloane_
%E Better description from _Jud McCranie_, Mar 05 2003