[go: up one dir, main page]

login
A002941
Arrays of dumbbells.
(Formerly M4396 N1852)
12
1, 7, 29, 94, 263, 667, 1577, 3538, 7622, 15900, 32314, 64274, 125561, 241569, 458715, 861242, 1601081, 2950693, 5396209, 9801012, 17692092, 31759800, 56727588, 100861716, 178585489, 314995915, 553650761, 969967510, 1694235803
OFFSET
1,2
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15.2 (1974), 214-216. (Annotated scanned copy)
FORMULA
G.f.: (1+x)^2/((1-x-x^2)^3*(1-x)^2).
a(n) = 2*a(n-1) - a(n-3) + A002940(n) + A002940(n-1).
MATHEMATICA
CoefficientList[(1+x)^2/((1-x-x^2)^3*(1-x)^2) + O[x]^30, x] (* Jean-François Alcover, Jul 31 2018 *)
LinearRecurrence[{5, -7, -2, 10, -2, -5, 1, 1}, {1, 7, 29, 94, 263, 667, 1577, 3538}, 30] (* Harvey P. Dale, Aug 29 2021 *)
PROG
(Haskell)
a002941 n = a002941_list !! (n-1)
a002941_list = 1 : 7 : 29 : zipWith (+)
(zipWith (-) (map (* 2) $ drop 2 a002941_list) a002941_list)
(drop 2 $ zipWith (+) (tail a002940_list) a002940_list)
-- Reinhard Zumkeller, Jan 18 2014
(PARI) x='x+O('x^30); Vec((1+x)^2/((1-x-x^2)^3*(1-x)^2)) \\ Altug Alkan, Jul 31 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)^2/((1-x-x^2)^3*(1-x)^2) )); // G. C. Greubel, Jan 31 2019
(Sage) ((1+x)^2/((1-x-x^2)^3*(1-x)^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019
KEYWORD
nonn,easy
EXTENSIONS
More terms from Henry Bottomley, Jun 02 2000
STATUS
approved