[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002909
Low temperature energy function for square lattice.
(Formerly M0035 N0009)
2
2, 0, -8, -24, -72, -240, -896, -3640, -15688, -70512, -326968, -1553288, -7523520, -37026704, -184677536, -931655064, -4746324296, -24387839056, -126257024696, -658011767016, -3449826712952, -18183760406080, -96309365029424, -512340286827272
OFFSET
0,1
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. F. Sykes and M. E. Fisher, Antiferromagnetic susceptibility of the plane square and honeycomb Ising lattices, Physica, 28 (1962), 919-938.
FORMULA
G.f.: (1+x)/(1-x) + ((1-6*x+x^2)/(1-x^2))*Sum_{k>=0} (2*k)!^2 * (x*(1-x)^2/(1+x)^4)^k/k!^4. - Robert Israel, Nov 27 2017
a(n) ~ -2 * (1 + sqrt(2))^(2*n) / (Pi*n^2). - Vaclav Kotesovec, Nov 28 2017
MAPLE
u:=v->((1+v^2)*(1-(2/Pi)*(1-6*v^2+v^4)*EllipticK(4*v*(1-v^2)/(1+v^2)^2)/(1+v^2)^2)/2*v):
S:= series(u((1-v)/(1+v))/((1-v)/(1+v))^2, v, 101):
seq(coeff(S, v, j), j=0..100, 2); # Sean A. Irvine, Nov 27 2017
MATHEMATICA
Table[SeriesCoefficient[(1 + v)/(1 - v)^3 ((1 - v)^2 + 2/Pi (1 - 6 v + v^2) EllipticK[(16 v^2)/(1 - v)^4]), {v, 0, k}], {k, 0, 100}] (* Jan Mangaldan, Nov 28 2020 *)
CROSSREFS
Sequence in context: A241682 A076687 A062134 * A118437 A134185 A013489
KEYWORD
sign
EXTENSIONS
More terms from Sean A. Irvine, Nov 27 2017
STATUS
approved