[go: up one dir, main page]

login
A002743
Sum of logarithmic numbers.
(Formerly M2132 N0845)
5
1, 1, 2, 24, -11, 1085, -2542, 64344, -56415, 4275137, -10660486, 945005248, -6010194555, 147121931021, 88135620922, 23131070531152, -120142133444319, 12007306976370081, -103897545509370542, 4923827766711915784, -19471338470911446283, 1203786171449486366205
OFFSET
1,3
REFERENCES
J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83. [Annotated scanned copy]
J. M. Gandhi, Logarithmic Numbers and the Functions d(n) and sigma(n), The American Mathematical Monthly, Vol. 73, No. 9 (1966), pp. 959-964, alternative link.
FORMULA
a(n) = Sum_{k=1..n} (-1)^(n-k)*A000203(k)*(k-1)!*binomial(n, k). - Vladeta Jovovic, Feb 09 2003
E.g.f.: exp(-x) * Sum_{k>=1} x^k / (k*(1 - x^k)). - Ilya Gutkovskiy, Dec 11 2019
a(p) == -1 (mod p) for prime p. The pseudoprimes of this congruence are 6, 42, 1806, ... - Amiram Eldar, May 13 2020
MATHEMATICA
a[n_] := n! * Sum[(-1)^k * DivisorSigma[1, n - k]/k!/(n - k), {k, 0, n - 1}]; Array[a, 22] (* Amiram Eldar, May 13 2020 *)
PROG
(PARI) a(n) = sum(k=1, n, (-1)^(n-k)*sigma(k)*(k-1)!*binomial(n, k)); \\ Michel Marcus, May 13 2020
CROSSREFS
Sequence in context: A066585 A278563 A075267 * A220773 A290772 A342545
KEYWORD
sign
EXTENSIONS
More terms from Jeffrey Shallit
STATUS
approved