[go: up one dir, main page]

login
A002408
Expansion of 8-dimensional cusp form.
9
0, 1, -8, 28, -64, 126, -224, 344, -512, 757, -1008, 1332, -1792, 2198, -2752, 3528, -4096, 4914, -6056, 6860, -8064, 9632, -10656, 12168, -14336, 15751, -17584, 20440, -22016, 24390, -28224, 29792, -32768, 37296, -39312, 43344, -48448, 50654, -54880, 61544, -64512, 68922
OFFSET
0,3
COMMENTS
Essentially the same as A007331.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
"For Gamma, it is known that any modular form is a weighted homogeneous polynomial in Theta_Z, which has weight 1/2, and the modular form delta_8(t) := e^(Pi i tau) Product_{m=1..oo} ((1 - e^(Pi i m tau)) (1 + e^(2 Pi i m tau)))^8 = e^(Pi i tau) - 8 e^(2 Pi i tau) + 28 e^(3 Pi i tau) - 64 e^(4 Pi i tau) + 126 e^(5 Pi i tau) ... of weight 4." [Elkies, p. 1242]
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 187.
Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, Manifolds and Modular Forms, Vieweg 1994, p. 133.
LINKS
Noam D. Elkies, Lattices, Linear Codes and Invariants, Part I, Notices of the Amer. Math. Soc., 47 (No. 10, Nov. 2000), 1238-1245, see p. 1242.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of (eta(q)* eta(q^4) / eta(q^2))^8 in powers of q. - Michael Somos, Jul 16 2004
Euler transform of period 4 sequence [-8, 0, -8, -8, ...]. - Michael Somos, Jul 16 2004
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = +u^4*w*v + 16*u^3*w*v^2 + 16*u^2*w^2*v^2 + 256*u^3*w^3 + 256*u^3*w^2*v + 4096*u^2*w^3*v + 4096*u*w^4*v + 4096*u*w^3*v^2 - u^2*v^4 - 16*u^2*w*v^3 - 256*u*w^2*v^3 - 256*w^2*v^4. - Michael Somos, May 31 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^4*u6^4 + u1^3*u2*u3^3*u6 + 2*u1*u2^3*u3*u6^3 - u2^4*u3^4.
Expansion of q * psi(-q)^8 in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Mar 20 2008
a(n) is multiplicative with a(2^e) = -8^e if e>0, a(p^e) = ((p^3)^(e+1) - 1) / (p^3 - 1). - Michael Somos, Mar 20 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 16 (t/i)^4 f(t) where q = exp(2 Pi i t).
G.f.: x * (Product_{k>0} (1 - x^(2*k-1)) * (1 - x^(4*k)))^8.
a(n) = -(-1)^n * A007331(n).
a(2*n) = -8 * A007331(n). a(2*n + 1) = A045823(n). - Michael Somos, May 25 2014
Dirichlet g.f.: zeta(s-3) * zeta(s) * (1 - 1/2^s) * (1 - 1/2^(s-4)). - Amiram Eldar, Nov 03 2023
EXAMPLE
G.f. = q - 8*q^2 + 28*q^3 - 64*q^4 + 126*q^5 - 224*q^6 + 344*q^7 ...
MAPLE
q*product((1-q^(2*k-1))^8*(1-q^(4*k))^8, k=1..75);
MATHEMATICA
a[0] = 0; a[n_] := -(-1)^n*Sum[ Mod[n/d, 2]*d^3, {d, Divisors[n]}]; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Jan 27 2012, after Michael Somos *)
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^4] / QPochhammer[ q^2])^8, {q, 0, n}]; (* Michael Somos, May 25 2014 *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) / eta(x^2 + A))^8, n))}; /* Michael Somos, Jul 16 2004 */
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (prod(k=1, n, (1 -( k%4==0) * x^k) * (1 - (k%2==1) * x^k), 1 + A))^8, n))}; /* Michael Somos, Jul 16 2004 */
(PARI) {a(n) = if( n<1, 0, -(-1)^n * sumdiv(n, d, (n/d%2) * d^3))}; /* Michael Somos, May 31 2005 */
(Sage) A = ModularForms( Gamma0(4), 4, prec=70) . basis(); A[1] - 8*A[2] # _Michael Somos, May 25 2014
(Python)
from sympy import divisors
def a(n): return 0 if n == 0 else -(-1)**n * sum([((n/d)%2) * d**3 for d in divisors(n)])
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 24 2017
CROSSREFS
KEYWORD
sign,nice,easy,mult
STATUS
approved