[go: up one dir, main page]

login
A002316
Related to Bernoulli numbers.
(Formerly M3941 N1624)
7
1, 5, 26, 97, 265, 362, -1351, -13775, -70226, -262087, -716035, -978122, 3650401, 37220045, 189750626, 708158977, 1934726305, 2642885282, -9863382151, -100568547815, -512706121226, -1913445293767, -5227629760075, -7141075053842
OFFSET
0,2
COMMENTS
Denoted by beta_n by Lehmer.
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 84.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(0)..a(11) are as given (with signs); for n >= 12, a(n) = -2702*a(n-6) - a(n-12).
G.f.: (2x^3 + 7x^2 - x + 1)/(x^4 + 6x^3 + 11x^2 - 6x + 1).
a(0)=1, a(1)=5, a(2)=26, a(3)=97, a(n) = 6*a(n-1) - 11*a(n-2) - 6*a(n-3) - a(n-4). - Harvey P. Dale, Jun 13 2011
MAPLE
f:= gfun:-rectoproc({a(0)=1, a(1)=5, a(2)=26, a(3)=97, a(n)=6*a(n-1)-11*a(n-2)-6*a(n-3)-a(n-4)}, a(n), remember):
map(f, [$0..25]); # Robert Israel, Aug 23 2017
MATHEMATICA
LinearRecurrence[{6, -11, -6, -1}, {1, 5, 26, 97}, 30] (* or *) CoefficientList[ Series[(2x^3+7x^2-x+1)/(x^4+6x^3+11x^2-6x+1), {x, 0, 30}], x] (* Harvey P. Dale, Jun 13 2011 *)
PROG
(PARI) {a(n)=if(n>=0, polcoeff( (1-x+7*x^2+2*x^3)/(1-6*x+11*x^2+6*x^3+x^4) +x*O(x^n), n), n=-1-n; (-1)^n*polcoeff( (2-7*x-x^2-x^3)/(1-6*x+11*x^2+6*x^3+x^4) +x*O(x^n), n) )} /* Michael Somos, Mar 27 2005 */
CROSSREFS
a(n) = (-1)^n*A002317(-1-n).
Sequence in context: A362317 A047669 A297689 * A293799 A211606 A005499
KEYWORD
sign,easy
EXTENSIONS
More terms from James A. Sellers, Dec 23 1999
STATUS
approved