[go: up one dir, main page]

login
A002086
Number of circulant tournaments on 2n+1 nodes up to Cayley isomorphism.
(Formerly M0939 N0353)
4
1, 1, 2, 4, 4, 6, 16, 16, 30, 88, 94, 208, 472, 586, 1096, 3280, 5472, 7286, 21856, 26216, 49940, 175104, 182362, 399480, 1048576, 1290556, 3355456, 7456600, 9256396, 17895736, 59660288, 89478656, 130150588, 390451576, 490853416, 954437292, 3435974656
OFFSET
1,3
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
B. Alspach, On point-symmetric tournaments, Canad. Math. Bull., 13 (1970), 317-323. See g(n) as defined on page 322 (NOT on page 317).
B. Alspach, On point-symmetric tournaments, Canad. Math. Bull., 13 (1970), 317-323. [Annotated copy] See g(n) as defined on page 322 (NOT on page 317).
MATHEMATICA
IsLeastPoint[s_, f_] := Module[{t = f[s]}, While[t > s, t = f[t]]; s == t];
C0[n_, k_] := Sum[Boole @ IsLeastPoint[u, Mod[#*k, n]&], {u, 1, n-1}]/2;
IsBidrected[s_, r_, f_] := Module[{t = f[s]}, While[t != s && t != r, t = f[t]]; t == r];
IsC[n_, k_] := Sum[Boole @ IsBidrected[u, n-u, Mod[#*k, n]&], {u, 1, n-1}] == 0;
a[n_] := Module[{m = 2*n + 1}, Sum[If [GCD[m, k] == 1 && IsC[m, k], 2^C0[m, k], 0], {k, 1, m}]/EulerPhi[m]];
Array[a, 40] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)
PROG
(PARI)
IsLeastPoint(s, f)={my(t=f(s)); while(t>s, t=f(t)); s==t}
C(n, k)=sum(u=1, n-1, IsLeastPoint(u, v->v*k%n))/2;
IsBidrected(s, r, f)={my(t=f(s)); while(t<>s&&t<>r, t=f(t)); t==r}
IsC(n, k)=sum(u=1, n-1, IsBidrected(u, n-u, v->v*k%n))==0;
a(n)=my(m=2*n+1); sum(k=1, m, if (gcd(m, k)==1 && IsC(m, k), 2^C(m, k), 0))/eulerphi(m); \\ Andrew Howroyd, Sep 30 2017
CROSSREFS
Sequence in context: A206987 A207845 A207808 * A039830 A159788 A179112
KEYWORD
nonn
EXTENSIONS
More terms from Roderick J. Fletcher, Oct 15 1996 (yylee(AT)mail.ncku.edu.tw)
Definition corrected by Andrew Howroyd, Apr 28 2017
Terms a(32) and beyond from Andrew Howroyd, Sep 30 2017
STATUS
approved