[go: up one dir, main page]

login
A002075
Number of equivalence classes with primitive period n of base 3 necklaces, where necklaces are equivalent under rotation and permutation of symbols.
(Formerly M1160 N0443)
8
1, 1, 2, 4, 8, 22, 52, 140, 366, 992, 2684, 7404, 20440, 56992, 159440, 448540, 1266080, 3587610, 10195276, 29057520, 83018728, 237737984, 682196948, 1961323740, 5648590728, 16294032160, 47071589778, 136171440600
OFFSET
1,3
REFERENCES
N. J. Fine, Classes of periodic sequences, Illinois J. Math., 2 (1958), 285-302.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
Reference gives formula.
Sequence A002076 can be found as follows: Let F3(n) = this sequence, F3*(n) = function from A002076. Then F3*(n) = Sum_{ d divides n } F3(d).
CROSSREFS
KEYWORD
nonn,easy,nice
EXTENSIONS
Better description and more terms from Mark Weston (mweston(AT)uvic.ca), Oct 07 2001
STATUS
approved