OFFSET
0,3
COMMENTS
Every connected graph on n nodes can be colored with n colors in exactly n! ways, so this sequence is just n! * A001187(n). - Andrew Howroyd, Dec 03 2018
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50
R. C. Read, E. M. Wright, Colored graphs: A correction and extension, Canad. J. Math. 22 1970 594-596.
FORMULA
a(n) = n!*A001187(n). - Andrew Howroyd, Dec 03 2018
Define M_0(k)=1, M_n(0)=0, M_n(k) = Sum_{r=0..n} C(n,r)*2^(r*(n-r))*M_r(k-1) [M_n(k) = A322280(n,k)], m_n(k) = M_n(k) -Sum_{r=1..n-1} C(n-1,r-1)*m_r(k)*M_{n-r}(k) [m_n(k) = A322279(n,k)], f_n(k) = Sum_{r=1..k} (-1)^(k-r)*C(k,r)*m_n(r). This sequence gives a(n) = f_n(n). - Sean A. Irvine, May 29 2013, edited Andrew Howroyd, Dec 03 2018
The above formula is referenced by sequences A002027-A002030, A002031. - Andrew Howroyd, Dec 03 2018
MATHEMATICA
(* b = A001187 *) b[n_] := b[n] = If[n == 0, 1, 2^(n(n-1)/2) - Sum[k* Binomial[n, k]*2^((n-k)(n-k-1)/2)*b[k], {k, 1, n-1}]/n];
a[n_] := n! b[n];
PROG
(PARI) seq(n) = {Vec(serlaplace(serlaplace(1 + log(sum(k=0, n, 2^binomial(k, 2)*x^k/k!, O(x*x^n))))))} \\ Andrew Howroyd, Dec 03 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Sean A. Irvine, May 29 2013
Name clarified by Andrew Howroyd, Dec 03 2018
a(0)=1 prepended by Andrew Howroyd, Jan 05 2024
STATUS
approved