Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1707 N0676 #52 Nov 18 2023 14:17:39
%S 2,6,38,390,6062,134526,4172198,178449270,10508108222,853219059726,
%T 95965963939958,15015789392011590,3282145108526132942,
%U 1005193051984479922206,432437051675617901246918,261774334771663762228012950,223306437526333657726283273822
%N Number of labeled connected digraphs on n nodes where every node has indegree 0 or outdegree 0 and no isolated nodes.
%C Also number of labeled connected graphs with 2-colored nodes with no isolated nodes where black nodes are only connected to white nodes and vice versa.
%C In- or outdegree zero implies loops are not admitted. Multi-arcs are not admitted. - _R. J. Mathar_, Nov 18 2023
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Alois P. Heinz, <a href="/A002031/b002031.txt">Table of n, a(n) for n = 2..100</a>
%H R. C. Read, E. M. Wright, <a href="http://dx.doi.org/10.4153/CJM-1970-066-1">Colored graphs: A correction and extension</a>, Canad. J. Math. 22 1970 594-596.
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F Logarithmic transform of A052332.
%F E.g.f.: log(Sum(exp((2^n-2)*x)*x^n/n!, n=0..infinity)). - _Vladeta Jovovic_, May 28 2004
%F a(n) = f(n,2) using functions defined in A002032. - _Sean A. Irvine_, May 29 2013
%p logtr:= proc(p) local b; b:=proc(n) option remember; local k; if n=0 then 1 else p(n)- add(k *binomial(n,k) *p(n-k) *b(k), k=1..n-1)/n fi end end: digr:= n-> add(binomial(n,k) *(2^k-2)^(n-k), k=0..n): a:= logtr(digr): seq(a(n), n=2..25); # _Alois P. Heinz_, Sep 14 2008
%t terms = 17; s = Log[Sum[Exp[(2^n - 2)*x]*(x^n/n!), {n, 0, terms+2}]] + O[x]^(terms+2); Drop[CoefficientList[s, x]*Range[0, terms+1]!, 2] (* _Jean-François Alcover_, Nov 08 2011, after _Vladeta Jovovic_, updated Jan 12 2018 *)
%Y Cf. A001831, A001832, A002032, A047863, A052332, A007776 (unlabeled case). Essentially the same as A002027.
%K nonn,nice
%O 2,1
%A _N. J. A. Sloane_
%E More terms, formula and new title from _Christian G. Bower_, Dec 15 1999
%E Corrected by _Vladeta Jovovic_, Apr 12 2003