[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Eighth column of quadrinomial coefficients.
(Formerly M4234 N1769)
6

%I M4234 N1769 #51 Apr 13 2022 13:25:16

%S 6,40,155,456,1128,2472,4950,9240,16302,27456,44473,69680,106080,

%T 157488,228684,325584,455430,627000,850839,1139512,1507880,1973400,

%U 2556450,3280680,4173390,5265936,6594165,8198880,10126336,12428768,15164952,18400800,22209990

%N Eighth column of quadrinomial coefficients.

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A001919/b001919.txt">Table of n, a(n) for n = 3..1000</a>

%H L. Carlitz et al., <a href="http://dx.doi.org/10.1016/S0021-9800(66)80057-1">Permutations and sequences with repetitions by number of increases</a>, J. Combin. Theory, 1 (1966), 350-374.

%H R. K. Guy, <a href="/A005712/a005712.pdf">Letter to N. J. A. Sloane, 1987</a>

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8, -28, 56, -70, 56, -28, 8, -1).

%F a(n) = A008287(n, 7) = binomial(n+2, 5)*(n^2+21*n+180 )/42, n >= 3.

%F G.f.: (x^3)*(6-8*x+3*x^2 )/(1-x)^8. Numerator polynomial is N4(7, x) from array A063421.

%F a(n) = n(n^2-1)(n^2-4)(n^2+21n+180)/5040. - _Emeric Deutsch_, Jan 27 2005

%F a(n) = 6*C(n,3) + 16*C(n,4) + 15*C(n,5) + 6*C(n,6) + C(n,7) (see comment in A071675). - _Vladimir Shevelev_ and _Peter J. C. Moses_, Jun 22 2012

%F a(3)=6, a(4)=40, a(5)=155, a(6)=456, a(7)=1128, a(8)=2472, a(9)=4950, a(10)=9240, a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)- 28*a(n-6)+ 8*a(n-7)-a(n-8). - _Harvey P. Dale_, Mar 27 2013

%p seq(n*(n^2-1)*(n^2-4)*(n^2+21*n+180)/5040,n=3..34); # _Emeric Deutsch_, Jan 27 2005

%p A001919:=(3*z**2-8*z+6)/(z-1)**8; # conjectured by _Simon Plouffe_ in his 1992 dissertation

%t Table[n*(n^2 - 1)*(n^2 - 4)*(n^2 + 21*n + 180)/5040, {n, 3, 50}] (* _T. D. Noe_, Aug 17 2012 *)

%t LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{6,40,155,456,1128,2472,4950,9240},40] (* _Harvey P. Dale_, Mar 27 2013 *)

%K nonn,easy

%O 3,1

%A _N. J. A. Sloane_

%E More terms from _Emeric Deutsch_, Jan 27 2005