[go: up one dir, main page]

login
A001730
a(n) = n!/6!.
(Formerly M4436 N1876)
26
1, 7, 56, 504, 5040, 55440, 665280, 8648640, 121080960, 1816214400, 29059430400, 494010316800, 8892185702400, 168951528345600, 3379030566912000, 70959641905152000, 1561112121913344000, 35905578804006912000, 861733891296165888000, 21543347282404147200000
OFFSET
6,2
COMMENTS
The asymptotic expansion of the higher-order exponential integral E(x,m=1,n=7) ~ exp(-x)/x*(1 - 7/x + 56/x^2 - 504/x^3 + 5040/x^4 - 55440/x^5 + 665280/x^6 - 8648640/x^7 + ...) leads to the sequence given above. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliƩs aux nombres de Stirling. II, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 107-108 1963 1-77.
FORMULA
a(n)= A051339(n-6, 0)*(-1)^n (first unsigned column of triangle).
E.g.f.: x^6/(6!*(1-x)). [corrected by Alois P. Heinz, Jul 09 2021]
a(n) = A173333(n,6). - Reinhard Zumkeller, Feb 19 2010
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(k+7)/(x*(k+7) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
a(n) = A245334(n,n-6) / 7. - Reinhard Zumkeller, Aug 31 2014
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=6} 1/a(n) = 720*e - 1956.
Sum_{n>=6} (-1)^n/a(n) = 720/e - 264. (End)
MATHEMATICA
a[n_]:=n!/6!; Array[a, 4!, 6] (* Vladimir Joseph Stephan Orlovsky, Oct 25 2009 *)
PROG
(Magma) [Factorial(n)/720: n in [6..25]]; // Vincenzo Librandi, Jul 20 2011
(PARI) a(n)=n!/720 \\ Charles R Greathouse IV, Jan 12 2012
(Haskell)
a001730 = (flip div 720) . a000142 -- Reinhard Zumkeller, Aug 31 2014
KEYWORD
nonn,easy
STATUS
approved