OFFSET
0,2
COMMENTS
Self-convolution of A092870, where A092870(n) = (12^n/n!^2) * Product_{k=0..n-1} (12k+1)*(12k+5). - Paul D. Hanna, Jan 25 2011
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..310 (terms 0..75 from Vincenzo Librandi)
Timothy Huber, Daniel Schultz, and Dongxi Ye, Ramanujan-Sato series for 1/pi, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.
M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998 (See Eq. 31.)
R. S. Maier, Nonlinear differential equations satisfied by certain classical modular forms, arXiv:0807.1081 [math.NT], 2008_2010, p. 34 equation (7.29b).
R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
FORMULA
O.g.f.: Hypergeometric2F1(5/12, 1/12; 1; 1728x)^2. - Jacob Lewis (jacobml(AT)uw.edu), Jul 28 2009
a(n) = binomial(2n,n) * (12^n/n!^2) * Product_{k=0..n-1} (6k+1)*(6k+5). - Paul D. Hanna, Jan 25 2011
G.f.: F(1/6, 1/2, 5/6; 1, 1; 1728*x), a hypergeometric series. - Michael Somos, Feb 28 2011
0 = y^3*z^3 - 360*y^4*z^2 + 43200*y^5*z - 1728000*y^6 - 16632*x*y^2*z^3 + 7691328*x*y^3*z^2 - 1738520064*x*y^4*z + 176027074560*x*y^5 + 92207808*x^2*y*z^3 - 69176553984*x^2*y^2*z^2 + 23624298528768*x^2*y^3*z - 2853152143441920*x^2*y^4 - 170400029184*x^3*z^3 + 224945232150528*x^3*y*z^2 - 92759146352345088*x^3*y^2*z + 11686511179538104320*x^3*y^3 where x = a(n), y = a(n+1), z = a(n+2) for all n in z. - Michael Somos, Sep 21 2014
a(n) ~ 2^(6*n - 1) * 3^(3*n) / (Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Apr 07 2018
From Peter Bala, Feb 14 2020: (Start)
a(n) = binomial(6*n,n)*binomial(5*n,n)*binomial(4*n,n) = ( [x^n](1 + x)^(6*n) ) * ( [x^n](1 + x)^(5*n) ) * ( [x^n](1 + x)^(4*n) ) = [x^n](F(x)^(120*n)), where F(x) = 1 + x + 227*x^2 + 123980*x^3 + 92940839*x^4 + 82527556542*x^5 + 81459995686401*x^6 + ...
appears to have integer coefficients. For similar results see A008979.
a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k - apply Mestrovic, equation 39, p. 12.
a(n) = [(x*y*z)^n] (1 + x + y + z)^(6*n). (End)
a(n) = (8^n/n!^3)*Product_{k = 0..3*n-1} (2*k + 1). - Peter Bala, Feb 26 2023
a(n) = 24*(6*n - 1)*(2*n - 1)*(6*n - 5)*a(n-1)/n^3. - Neven Sajko, Jul 19 2023
EXAMPLE
G.f.: A(x) = 1 + 120*x + 83160*x^2 + 81681600*x^3 + ...
A(x)^(1/2) = 1 + 60*x + 39780*x^2 + 38454000*x^3 + ... + A092870(n)*x^n + ...
MAPLE
f := n->(6*n)!/( (n!)^3*(3*n)!);
MATHEMATICA
Factorial[6 n]/(Factorial[3n] Factorial[n]^3) (* Jacob Lewis (jacobml(AT)uw.edu), Jul 28 2009 *)
a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/6, 1/2, 5/6}, {1, 1}, 1728 x], {x, 0, n}] (* Michael Somos, Jul 11 2011 *)
PROG
(PARI) {a(n)=(2*n)!/n!^2*(12^n/n!^2)*prod(k=0, n-1, (6*k+1)*(6*k+5))} \\ Paul D. Hanna, Jan 25 2011
(Magma) [Factorial(6*n)/(Factorial(n)^3*Factorial(3*n)): n in [0..15]]; // Vincenzo Librandi, Oct 26 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Glenn K Painter (KUPK78A(AT)prodigy.com)
STATUS
approved