[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001258
Number of labeled n-node trees with unlabeled end-points.
(Formerly M1678 N0660)
3
1, 1, 2, 6, 25, 135, 892, 6937, 61886, 621956, 6946471, 85302935, 1141820808, 16540534553, 257745010762, 4298050731298, 76356627952069, 1439506369337319, 28699241994332940, 603229325513240569, 13330768181611378558, 308967866671489907656, 7493481669479297191451, 189793402599733802743015, 5010686896406348299630712
OFFSET
2,3
REFERENCES
J.W. Moon, Counting Labelled Trees, Issue 1 of Canadian mathematical monographs, Canadian Mathematical Congress, 1970, Sec. 3.9.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
F. Harary, A. Mowshowitz and J. Riordan, Labeled trees with unlabeled end-points, J. Combin. Theory, 6 (1969), 60-64.
MAPLE
# This gives the sequence but without the initial 1:
with(combinat);
R:=proc(n, k) # this gives A055314
if n=1 then if k=1 then RETURN(1) else RETURN(0); fi
elif (n=2 and k=2) then RETURN(1)
elif (n=2 and k>2) then RETURN(0)
else stirling2(n-2, n-k)*n!/k!;
fi;
end;
Rstar:=proc(n, k) # this gives A213262
if k=2 then
if n <=4 then RETURN(1); else RETURN((n-2)!/2); fi;
else
if k <= n-2 then add(binomial(n-i-1, k-i)*R(n-k, i), i=2..n-1);
elif k=n-1 then 1;
else 0;
fi;
fi;
end;
[seq(add(Rstar(n, k), k=2..n-1), n=3..20)];
MATHEMATICA
r[n_, k_] := Which[n == 1, If[k == 1, Return[1], Return[0]], n == 2 && k == 2, Return[1], n == 2 && k > 2, Return[0], n > k > 0, StirlingS2[n-2, n-k]*n!/k!, True, 0]; rstar[n_, k_] := Which[k == 2, If[n <= 4, Return[1], Return[(n-2)!/2]], k <= n-2, Sum[Binomial[n-i-1, k-i]*r[n-k, i], {i, 2, n-1}], k == n-1, 1, True, 0]; Join[{1}, Table[Sum[rstar[n, k], {k, 2, n-1}], {n, 3, 26}]] (* Jean-François Alcover, Oct 08 2012, translated from Maple *)
tStar[2] = 1;
tStar[n_] :=
Sum[(-1)^j Binomial[n - k, j] Binomial[n - 1 - j,
k] (n - k - j)^(n - k - 2), {k, 2, n - 1}, {j, 0, n - k - 1}];
Table[tStar[n], {n, 2, 20}] (* David Callan, Jul 18 2014, after Moon reference *)
CROSSREFS
Cf. A151880.
Sequence in context: A317022 A143917 A009326 * A247499 A124373 A010787
KEYWORD
nonn,nice
AUTHOR
N. J. A. Sloane. More terms from N. J. A. Sloane, Jun 07 2012
STATUS
approved