OFFSET
1,1
COMMENTS
The possible dimensions of real simple Lie algebras are the numbers n and 2n where n runs through the dimensions of the complex simple Lie algebras.
REFERENCES
Freeman J. Dyson, Missed opportunities, Bull. Amer. Math. Soc. 78 (1972), 635-652.
N. Jacobson, Lie Algebras. Wiley, NY, 1962; see pp. 141-146.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
FORMULA
Numbers n and 2n as n runs through A003038.
EXAMPLE
6 is the dimension of the real simple Lie algebra SL_2(C).
MATHEMATICA
max = 18; sa = Table[k*(k+2), {k, 1, max}]; sb = Table[k*(2k+1), {k, 2, max}]; sd := Table[k*(2k-1), {k, 4, max}]; se = {14, 52, 78, 133, 248}; Select[ Union[sa, 2*sa, sb, 2*sb, sd, 2*sd, se, 2*se], # <= max^2 &] (* Jean-François Alcover, Apr 02 2012, after A003038 *)
PROG
(Haskell)
import Data.Set (deleteFindMin, fromList, insert)
a001066 n = a001066_list !! (n-1)
a001066_list = f (fromList [h, 2 * h]) $ tail a003038_list where
h = head a003038_list
f s (x:xs) = m : f (x `insert` (( 2 * x) `insert` s')) xs where
(m, s') = deleteFindMin s
-- Reinhard Zumkeller, Dec 16 2012
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
Richard E. Borcherds (reb(AT)math.berkeley.edu)
EXTENSIONS
Entry revised by N. J. A. Sloane, Mar 16 2007
STATUS
approved