[go: up one dir, main page]

login
A000925
Number of ordered ways of writing n as a sum of 2 squares of nonnegative integers.
19
1, 2, 1, 0, 2, 2, 0, 0, 1, 2, 2, 0, 0, 2, 0, 0, 2, 2, 1, 0, 2, 0, 0, 0, 0, 4, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 2, 3, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 1, 0, 4
OFFSET
0,2
REFERENCES
A. Das and A. C. Melissinos, Quantum Mechanics: A Modern Introduction, Gordon and Breach, 1986, p. 47.
E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985.
FORMULA
Coefficient of q^k in (1/4)*(1 + theta_3(0, q))^2.
a(A001481(n))>0; a(A022544(n))=0. - Benoit Cloitre, Apr 20 2003
MATHEMATICA
a[n_] := (pr = PowersRepresentations[n, 2, 2]; Count[Union[Join[pr, Reverse /@ pr]], {j_ /; j >= 0, k_ /; k >= 0}]); a /@ Range[0, 100] (* Jean-François Alcover, Apr 05 2011 *)
nn = 100; t = CoefficientList[Series[Sum[x^k^2, {k, 0, Sqrt[nn]}]^2, {x, 0, nn}], x] (* T. D. Noe, Apr 05 2011 *)
SquareQ[n_] := IntegerQ[Sqrt[n]]; Table[Count[FrobeniusSolve[{1, 1}, n], {__?SquareQ}], {n, 0, 100}] (* Robert G. Wilson v, Apr 15 2017 *)
PROG
(PARI) a(n)=sum(i=0, n, sum(j=0, n, if(i^2+j^2-n, 0, 1)))
(Haskell)
a000925 n = sum $ map (a010052 . (n -)) $ takeWhile (<= n) a000290_list
-- Reinhard Zumkeller, Sep 14 2014
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Jacques Haubrich (jhaubrich(AT)freeler.nl)
STATUS
approved