OFFSET
0,2
REFERENCES
A. Das and A. C. Melissinos, Quantum Mechanics: A Modern Introduction, Gordon and Breach, 1986, p. 47.
E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985.
LINKS
FORMULA
Coefficient of q^k in (1/4)*(1 + theta_3(0, q))^2.
MATHEMATICA
a[n_] := (pr = PowersRepresentations[n, 2, 2]; Count[Union[Join[pr, Reverse /@ pr]], {j_ /; j >= 0, k_ /; k >= 0}]); a /@ Range[0, 100] (* Jean-François Alcover, Apr 05 2011 *)
nn = 100; t = CoefficientList[Series[Sum[x^k^2, {k, 0, Sqrt[nn]}]^2, {x, 0, nn}], x] (* T. D. Noe, Apr 05 2011 *)
SquareQ[n_] := IntegerQ[Sqrt[n]]; Table[Count[FrobeniusSolve[{1, 1}, n], {__?SquareQ}], {n, 0, 100}] (* Robert G. Wilson v, Apr 15 2017 *)
PROG
(PARI) a(n)=sum(i=0, n, sum(j=0, n, if(i^2+j^2-n, 0, 1)))
(Haskell)
a000925 n = sum $ map (a010052 . (n -)) $ takeWhile (<= n) a000290_list
-- Reinhard Zumkeller, Sep 14 2014
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Jacques Haubrich (jhaubrich(AT)freeler.nl)
STATUS
approved