[go: up one dir, main page]

login
A000721
Number of NP-equivalence classes of balanced Boolean functions of n variables.
(Formerly M1721 N0683)
4
1, 2, 6, 74, 169112, 39785643746726, 37126652766640082937217814348006, 558874591495497577231218517843968898077072559983411918227348931497772
OFFSET
1,2
COMMENTS
These are distinct groups of Boolean functions of n variables that output an equal number of 0s and 1s across all possible inputs (balanced), and cannot be transformed into each other by negating or permuting inputs. - Aniruddha Biswas, Nov 12 2024
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
B. Elspas, Self-complementary symmetry types of Boolean functions, IEEE Trans. Electron. Computers, 9 (1960), 264-266.
B. Elspas, Self-complementary symmetry types of Boolean functions, IEEE Transactions on Electronic Computers 2, no. EC-9 (1960): 264-266. [Annotated scanned copy]
E. M. Palmer and R. W. Robinson, Enumeration of self-dual configurations, Pacific J. Math., 110 (1984), 203-221. [From Herman Jamke (hermanjamke(AT)fastmail.fm), Aug 21 2010]
FORMULA
a(n) ~ binomial(2^n, 2^(n-1)) / ( n! * 2^n ). - Aniruddha Biswas, Nov 12 2024
EXAMPLE
For n = 2 the a(2) = 2. Solutions are f(x,y)=x and f(x,y)=x⊕y; are two 2-variable NP-inequivalent balanced Boolean functions. - Aniruddha Biswas, Nov 12 2024
CROSSREFS
Sequence in context: A207136 A304641 A065410 * A262279 A327052 A231508
KEYWORD
nonn,nice,easy,changed
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Aug 21 2010, Sep 05 2010
STATUS
approved