[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000554
Number of labeled trees of diameter 3 with n nodes.
(Formerly M4843 N2070)
3
12, 60, 210, 630, 1736, 4536, 11430, 28050, 67452, 159588, 372554, 859950, 1965840, 4456176, 10026702, 22412970, 49806980, 110100060, 242220594, 530578950, 1157627352, 2516581800, 5452594550, 11777604930, 25367149836, 54492396756, 116769422490, 249644973150
OFFSET
4,1
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = n(n-1)*S2(n-2, 2) where S2(n, k) denotes the Stirling numbers of 2nd kind. - Victor Adamchik (adamchik(AT)cs.cmu.edu), Jul 19 2001
a(n) = n*(n-1)*(2^(n-3) - 1) = 2*A000217(n-1)*A000225(n-3). - Robert G. Wilson v, Jul 01 2007, corrected by Ilya Gutkovskiy, Sep 17 2016
a(n) = Sum_{k=1..n-3} binomial(n,2)*binomial(n-2,k). The sum gives the number of Prüfer sequences with exactly 2 distinct digits. - Geoffrey Critzer, Sep 17 2016
E.g.f.: (x*(exp(x)-1))^2/2. - Geoffrey Critzer, Sep 17 2016
O.g.f.: 2*x^4*(6 - 24*x + 33*x^2 - 18*x^3 + 4*x^4)/((1 - x)^3*(1 - 2*x)^3). - Ilya Gutkovskiy, Sep 17 2016
a(n) = (2^n-8)*(n-1)*n/8. - Colin Barker, Sep 18 2016
MATHEMATICA
f[n_] := n (n - 1)*StirlingS2[n - 2, 2]; Table[ f@n, {n, 4, 29}] (* Robert G. Wilson v, Jul 01 2007 *)
PROG
(PARI) Vec(2*x^4*(6-24*x+33*x^2-18*x^3+4*x^4)/((1-x)^3*(1-2*x)^3) + O(x^40)) \\ Colin Barker, Sep 18 2016
CROSSREFS
Sequence in context: A213818 A004302 A277106 * A012289 A012583 A009049
KEYWORD
nonn,easy
EXTENSIONS
More terms from Robert G. Wilson v, Jul 01 2007
STATUS
approved