[go: up one dir, main page]

login
A000526
Number of partially labeled trees with n nodes (5 of which are labeled).
(Formerly M5387 N2340)
2
125, 1296, 8716, 47787, 232154, 1040014, 4395772, 17781210, 69498964, 264248924, 982218072, 3582421612, 12857819052, 45515994861, 159205157535, 551049504784, 1889714853263, 6427147635062, 21698583468717
OFFSET
5,1
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G.f.: A(x) = B(x)^5*(125-204*B(x)+118*B(x)^2-24*B(x)^3)/(1-B(x))^7, where B(x) is g.f. for rooted trees with n nodes, cf. A000081.
MAPLE
b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n, k) option remember; add(b(n+1-j*k), j=1..iquo(n, k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-4)^5* (125-204*B(n-4) +118*B(n-4)^2 -24*B(n-4)^3)/ (1-B(n-4))^7, x=0, n+1), x, n): seq(a(n), n=5..23); # _Alois P. Heinz_, Aug 21 2008
MATHEMATICA
b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[b[n + 1 - j*k], {j, 1, Quotient[n, k]}]; B[n_] := B[n] = Sum[b[k]*x^k, {k, 1, n}]; a[n_] := SeriesCoefficient[B[n-4]^5*(125 - 204*B[n-4] + 118*B[n-4]^2 - 24*B[n-4]^3)/(1 - B[n-4])^7, {x, 0, n}]; Table[a[n], {n, 5, 23}] (* _Jean-François Alcover_, Mar 20 2014, after _Alois P. Heinz_ *)
CROSSREFS
Column k=5 of A034799.
Sequence in context: A352161 A243240 A237713 * A016971 A030082 A342349
KEYWORD
nonn
AUTHOR
_N. J. A. Sloane_
EXTENSIONS
More terms from _Vladeta Jovovic_, Oct 19 2001
STATUS
approved