[go: up one dir, main page]

login
A000307
Number of 4-level labeled rooted trees with n leaves.
(Formerly M3590 N1455)
18
1, 1, 4, 22, 154, 1304, 12915, 146115, 1855570, 26097835, 402215465, 6734414075, 121629173423, 2355470737637, 48664218965021, 1067895971109199, 24795678053493443, 607144847919796830, 15630954703539323090, 421990078975569031642, 11918095123121138408128
OFFSET
0,3
REFERENCES
J. de la Cal, J. Carcamo, Set partitions and moments of random variables, J. Math. Anal. Applic. 378 (2011) 16 doi:10.1016/j.jmaa.2011.01.002 Remark 5
J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.4.
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Jekuthiel Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy]
Gottfried Helms, Bell Numbers, 2008.
T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346.
T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346. (Annotated scanned copy)
K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela and A. I. Solomon, Hierarchical Dobinski-type relations via substitution and the moment problem, arXiv:quant-ph/0312202, 2003.
K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela and A. I. Solomon, Hierarchical Dobinski-type relations via substitution and the moment problem, J. Phys. A: Math.Gen 37 (2004) 3475-3487.
John Riordan, Letter, Apr 28 1976.
Kruchinin Vladimir Victorovich, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
FORMULA
E.g.f.: exp(exp(exp(exp(x)-1)-1)-1).
a(n) = sum(sum(sum(stirling2(n,k) *stirling2(k,m) *stirling2(m,r), k=m..n), m=r..n), r=1..n), n>0. - Vladimir Kruchinin, Sep 08 2010
MAPLE
g:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1, (n-1)! *add(p(k)*b(n-k)/ (k-1)!/ (n-k)!, k=1..n)) end end: a:= g(g(g(1))): seq(a(n), n=0..30); # Alois P. Heinz, Sep 11 2008
MATHEMATICA
nn = 18; a = Exp[Exp[x] - 1]; b = Exp[a - 1];
Range[0, nn]! CoefficientList[Series[Exp[b - 1], {x, 0, nn}], x] (*Geoffrey Critzer, Dec 28 2011*)
CROSSREFS
a(n)=|A039812(n,1)| (first column of triangle).
Column k=3 of A144150.
Sequence in context: A152404 A062817 A196275 * A294346 A049376 A083410
KEYWORD
nonn,easy
EXTENSIONS
Extended with new definition by Christian G. Bower, Aug 15 1998
STATUS
approved