[go: up one dir, main page]

login
A000220
Number of asymmetric trees with n nodes (also called identity trees).
(Formerly M2583 N1022)
14
1, 0, 0, 0, 0, 0, 1, 1, 3, 6, 15, 29, 67, 139, 310, 667, 1480, 3244, 7241, 16104, 36192, 81435, 184452, 418870, 955860, 2187664, 5025990, 11580130, 26765230, 62027433, 144133676, 335731381, 783859852, 1834104934, 4300433063, 10102854473, 23778351222
OFFSET
1,9
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 330.
S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 301 and 562.
F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 66, Eq. (3.3.22).
D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, pp. 386-88 describes methodology for generating similar sequence rapidly.
R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
A. J. Schwenk, personal communication.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 200 terms from T. D. Noe)
F. Harary, R. W. Robinson and A. J. Schwenk, Twenty-step algorithm for determining the asymptotic number of trees of various species, J. Austral. Math. Soc., Series A, 20 (1975), 483-503. Errata: Vol. A 41 (1986), p. 325.
P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 17 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
Peter Steinbach, Field Guide to Simple Graphs, Volume 3, Part 12 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
FORMULA
G.f.: A(x)-A^2(x)/2-A(x^2)/2, where A(x) is g.f. for A004111.
a(n) ~ c * d^n / n^(5/2), where d = A246169 = 2.51754035263200389079535..., c = 0.29938828746578432274375484519722721162... . - Vaclav Kotesovec, Aug 25 2014
MAPLE
with(numtheory):
b:= proc(n) option remember; `if`(n<2, n, add(b(n-k)*add(
b(d)*d*(-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1))
end:
a:= n-> b(n)-(add(b(j)*b(n-j), j=0..n)+
`if`(irem(n, 2)=0, b(n/2), 0))/2:
seq(a(n), n=1..50); # Alois P. Heinz, Feb 24 2015
MATHEMATICA
s[ n_, k_ ] := s[ n, k ]=a[ n+1-k ]+If[ n<2k, 0, -s[ n-k, k ] ]; a[ 1 ]=1; a[ n_ ] := a[ n ]=Sum[ a[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ a[ i ]-Sum[ a[ j ]a[ i-j ], {j, 1, i/2} ]+If[ OddQ[ i ], 0, a[ i/2 ](a[ i/2 ]-1)/2 ], {i, 1, 50} ] (* Robert A. Russell *)
CROSSREFS
KEYWORD
nonn,nice
STATUS
approved