[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009403
Expansion of e.g.f. log(1 + tanh(x)^2), even powers only.
2
0, 2, -28, 992, -69088, 8110592, -1448424448, 366436769792, -124760831684608, 55014520738414592, -30501848618302701568, 20768078187214502100992, -17035983844637174375907328, 16570619538920401323784404992
OFFSET
0,2
LINKS
FORMULA
a(n) ~ (-1)^(n+1) * 2^(4*n) * (2*n)! / (n * Pi^(2*n)). - Vaclav Kotesovec, Apr 20 2014
From G. C. Greubel, Jul 12 2022: (Start)
a(n) = 2*A024299(n).
a(n) = -4^n * (4^n - 2)*(4^n - 1)*Zeta(1-2*n), with a(0) = 0. (End)
MATHEMATICA
With[{nn=30}, Take[CoefficientList[Series[Log[1+Tanh[x]^2], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Aug 27 2013 *)
PROG
(Magma)
L:=RiemannZeta();
[0] cat [-Round(4^n*(4^n-2)*(4^n-1)*Evaluate(L, 1-2*n)): n in [1..20]]; // G. C. Greubel, Jul 12 2022
(SageMath) [0]+[-4^n*(4^n-2)*(4^n-1)*zeta(1-2*n) for n in (1..20)] # G. C. Greubel, Jul 12 2022
CROSSREFS
Cf. A024299.
Sequence in context: A352251 A012756 A362587 * A026944 A296464 A292806
KEYWORD
sign
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
Previous Mathematica program replaced by Harvey P. Dale, Aug 27 2013
STATUS
approved