[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009306
Expansion of e.g.f.: log(1 + exp(x)*x).
19
0, 1, 1, -1, -2, 9, 6, -155, 232, 3969, -20870, -118779, 1655028, 1610257, -143697722, 522358005, 13332842416, -138189937791, -1128293525646, 29219838555781, 17274118159180, -5993074252801839, 38541972209299966, 1179892974640047669
OFFSET
0,5
LINKS
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
a(n) = n! * Sum_{k=1..n} k^(n-k-1) * (-1)^(k+1)/(n-k)!. - Vladimir Kruchinin, Sep 07 2010
a(n) = n - Sum_{k=1..n-1} binomial(n-1,k-1) * (n-k) * a(k). - Ilya Gutkovskiy, Jan 17 2020
Lim sup_{n->infinity} (abs(a(n))/n!)^(1/n) = 1/abs(LambertW(-1)) = 1/A238274. - Vaclav Kotesovec, May 26 2021
MAPLE
a:= n-> n! *add(k^(n-k-1) *(-1)^(k+1) /(n-k)!, k=1..n):
seq(a(n), n=0..25);
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Log[1+Exp[x]x], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Oct 22 2016 *)
PROG
(PARI) seq(n)=Vec(serlaplace(log(1 + exp(x + O(x^n))*x)), -(n+1)) \\ Andrew Howroyd, May 26 2021
CROSSREFS
Cf. A009444.
Sequence in context: A122664 A318649 A033152 * A324555 A318969 A021775
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
Definition clarified by Harvey P. Dale, Oct 22 2016
STATUS
approved