[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008643
Molien series for group of 4 X 4 upper triangular matrices over GF(2).
3
1, 1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, 26, 26, 35, 35, 44, 44, 56, 56, 68, 68, 84, 84, 100, 100, 120, 120, 140, 140, 165, 165, 190, 190, 220, 220, 250, 250, 286, 286, 322, 322, 364, 364, 406, 406, 455, 455, 504, 504, 560, 560, 616, 616, 680, 680, 744
OFFSET
0,3
COMMENTS
Number of partitions of n into parts 1, 2, 4 and 8. - Ilya Gutkovskiy, May 24 2017
REFERENCES
D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.
FORMULA
G.f.: 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8)).
a(n) = floor(((n+14)*(3*(n+1)*(-1)^n + 2*n^2 + 17*n + 57) + 24*(floor(n/2) + 1)*(-1)^floor(n/2))/768). - Tani Akinari, Jun 16 2013
a(n) ~ 1/384*n^3. - Ralf Stephan, Apr 29 2014
MAPLE
a:= proc(n) local m, r; m := iquo(n, 8, 'r'); r:= iquo(r, 2)+1; ([11, 17, 26, 35][r]+ (9+ 3*r+ 4*m) *m) *m/3+ [1, 2, 4, 6][r] end: seq(a(n), n=0..100); # Alois P. Heinz, Oct 06 2008
MATHEMATICA
CoefficientList[1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8)) + O[x]^65, x] (* Jean-François Alcover, May 29 2015 *)
LinearRecurrence[{1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1}, {1, 1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, 26}, 65] (* Ray Chandler, Jul 15 2015 *)
PROG
(PARI) my(x='x+O('x^65)); Vec(1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8))) \\ G. C. Greubel, Feb 01 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 65); Coefficients(R!( (&*[1/(1-x^(2^j)): j in [0..3]]) )); // G. C. Greubel, Feb 01 2020
(Sage)
def A077952_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8)) ).list()
A077952_list(65) # G. C. Greubel, Feb 01 2020
CROSSREFS
Cf. A008804, A088932 (partial sums).
Sequence in context: A343100 A023023 A184157 * A008644 A008645 A018819
KEYWORD
nonn,easy
STATUS
approved