[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007983
Number of non-Abelian metacyclic groups of order p^n (p odd).
1
0, 0, 1, 2, 4, 7, 10, 15, 20, 27, 34, 44, 53, 66, 78, 94, 109, 129, 147, 171, 193, 221, 247, 280, 310, 348, 383, 426, 466, 515, 560, 615, 666, 727, 784, 852, 915, 990, 1060, 1142, 1219, 1309, 1393, 1491, 1583, 1689, 1789, 1904, 2012, 2136, 2253, 2386, 2512
OFFSET
1,4
LINKS
Steven Liedahl, Enumeration of metacyclic p-groups, J. Algebra 186 (1996), no. 2, 436-446.
FORMULA
a(n) = A136185(n) - floor(n/2) - 1. - Eric M. Schmidt, Jan 08 2015
G.f.: -x^3*(x^4-x-1) / ((x-1)^4*(x+1)^2*(x^2+x+1)). - Colin Barker, Jan 12 2015
MATHEMATICA
LinearRecurrence[{1, 2, -1, -2, -1, 2, 1, -1}, {0, 0, 1, 2, 4, 7, 10, 15}, 60] (* Harvey P. Dale, Jun 17 2016 *)
PROG
(PARI) concat([0, 0], Vec(-x^3*(x^4-x-1)/((x-1)^4*(x+1)^2*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Jan 12 2015
CROSSREFS
Sequence in context: A027384 A022939 A036702 * A049640 A179385 A362040
KEYWORD
nonn,easy
AUTHOR
S. Liedahl
EXTENSIONS
Initial terms added and sequence extended (using A136185) by Eric M. Schmidt, Jan 08 2015
STATUS
approved