OFFSET
2,2
COMMENTS
Inverse Euler transform of A048194 and A049312. - Detlef Pauly (dettodet(AT)yahoo.de) and Vladeta Jovovic, Jul 25 2003
Essentially the same as A318870. - Georg Fischer, Oct 02 2018
Number of connected digraphs on n unlabeled nodes where every node has indegree 0 or outdegree 0 and there are no isolated nodes. - Andrew Howroyd, Oct 03 2018
LINKS
Andrew Howroyd, Table of n, a(n) for n = 2..50 (terms 2..40 from Alois P. Heinz)
N. J. A. Sloane, Transforms
J. Textor, A. Idelberger, and M. Liskiewicz, Learning from Pairwise Marginal Independencies, arXiv:1508.00280 [cs.AI], 2015.
FORMULA
Inverse Euler transform of A055192. - Andrew Howroyd, Oct 03 2018
MATHEMATICA
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
A[n_, k_] := g[Min[n, k], Abs[n - k]];
b[d_] := Sum[A[n, d - n], {n, 0, d}];
EULERi[Array[b, 30]] // Rest (* Jean-François Alcover, Sep 16 2019, after Alois P. Heinz in A049312 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Georg Wambach (gw(AT)informatik.Uni-Koeln.de)
EXTENSIONS
More terms from Vladeta Jovovic, Jul 25 2003
Offset corrected by Andrew Howroyd, Oct 03 2018
STATUS
approved