[go: up one dir, main page]

login
A007689
a(n) = 2^n + 3^n.
(Formerly M1444)
91
2, 5, 13, 35, 97, 275, 793, 2315, 6817, 20195, 60073, 179195, 535537, 1602515, 4799353, 14381675, 43112257, 129271235, 387682633, 1162785755, 3487832977, 10462450355, 31385253913, 94151567435, 282446313697, 847322163875
OFFSET
0,1
REFERENCES
L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 14.
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 92.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
I. Amburg, K. Dasaratha, L. Flapan, T. Garrity, C. Lee, C. Mihailak, N. Neumann-Chun, S. Peluse, and M. Stoffregen, Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences, arXiv:1509.05239 [math.CO], 2015-2017.
FORMULA
E.g.f.: exp(2*x)*(1+exp(x)).
G.f.: (2-5*x)/((1-2*x)*(1-3*x)).
a(n) = 5*a(n-1) - 6*a(n-2).
Sum_{j=0..n-1} a(j) = (1/2)*(3^n - 1) + (2^n - 1). [Jolley] - Gary W. Adamson, Dec 20 2006
Equals double binomial transform of [2, 1, 1, 1, ...]. - Gary W. Adamson, Apr 23 2008
If p[i] = Fibonacci(2i-5) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010
a(n) = 2*a(n-1) + 3^(n-1), with a(0)=2. - Vincenzo Librandi, Nov 18 2010
a(n) = A001550(n) - 1 = A000079(n) + A000244(n). - Reinhard Zumkeller, Mar 01 2012
MAPLE
A007689:=n->2^n + 3^n: seq(A007689(n), n=0..50); # Wesley Ivan Hurt, Jan 24 2017
MATHEMATICA
Table[2^n + 3^n, {n, 0, 25}]
a=2; Numerator[Table[a=2*a-((a+1)/2), {n, 0, 7!}]] (*10 times (or more) faster for large numbers.*) (* Vladimir Joseph Stephan Orlovsky, Apr 19 2010 *)
LinearRecurrence[{5, -6}, {2, 5}, 30] (* nearly 20 times faster than the above program for large numbers. *) (* Harvey P. Dale, Oct 20 2013 *)
PROG
(Sage) [lucas_number2(n, 5, 6)for n in range(0, 27)] # Zerinvary Lajos, Jul 08 2008
(PARI) a(n)=2^n+3^n \\ Charles R Greathouse IV, Jun 15 2011
(Haskell)
a007689 n = a000079 n + a000244 n -- Reinhard Zumkeller, Apr 28 2013
(Magma) [2^n+3^n: n in [0..30]]; // G. C. Greubel, Mar 11 2023
CROSSREFS
For odd-indexed members divided by 5 see A096951.
Binomial transform of A000051.
Cf. A074600 - A074624, A082101 (primes).
Sequence in context: A022855 A091190 A264228 * A085281 A082582 A086581
KEYWORD
nonn,easy,nice
EXTENSIONS
Additional comments from Michael Somos, Jun 10 2000
STATUS
approved