[go: up one dir, main page]

login
A007603
Power-sum numbers: let n = a_1 a_2 ... a_k be a k-digit number; n is a power-sum number if there are exponents e_1 ... e_m such that n = Sum_{i=1..m} Sum_{j=1..k} a_j^e_i.
(Formerly M0480)
2
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 23, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90, 100, 102, 104, 108, 110, 111, 112, 113, 114, 115, 116, 117, 120, 122, 126, 130, 131, 132, 133, 134, 135, 136, 140, 144, 150, 151, 152, 153, 154, 156, 160, 162, 170, 171, 172, 173, 174, 178, 180, 182
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Mike Keith, Power-sum numbers, J. Recreational Mathematics, Vol. 18, No. 4 (1986), pp. 275-278. (Annotated scanned copy)
EXAMPLE
21 = (2+1)+(2^3+1^3)+(2^3+1^3), with e_1, e_2, e_3 = 1, 3, 3.
MATHEMATICA
q[n_] := Module[{d = IntegerDigits[n], v = {}, k = 1, s, ans = False}, If[Max[d] == 1, ans = Divisible[n, Total[d]], While[(s = Total[d^k]) <= n, AppendTo[v, s]; If[Length[IntegerPartitions[n, All, v]] > 0, ans = True; Break[]]; k++]]; ans]; Select[Range[200], q] (* Amiram Eldar, Sep 04 2021 *)
CROSSREFS
Sequence in context: A143289 A064807 A235591 * A005349 A234474 A285829
KEYWORD
nonn,easy,nice,base
EXTENSIONS
Corrected and extended by Naohiro Nomoto, Mar 11 2001
STATUS
approved