[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007538
A self-generating sequence: there are a(n) 3's between successive 2's.
(Formerly M0432)
13
2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3
OFFSET
1,1
COMMENTS
(a(n)) is the unique fixed point of the morphism 2->233, 3->2333 (immediate from its definition). - Michel Dekking, Feb 21 2017
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Bryce Emerson Blackham, Subtraction Games: Range and Strict Periodicity, Master's thesis, 2018.
The Fifty-Fourth William Lowell Putnam Mathematical Competition, Problem A-6, Amer. Math. Monthly, 101 (1994), 727-728.
The Fifty-Fourth William Lowell Putnam Mathematical Competition, Problem A-6, Math. Mag., 67 (No. 2, 1994), 157-158.
FORMULA
a(n) = floor( n*(1+sqrt(3)) ) - floor( (n-1)*(1+sqrt(3)) ).
a(n) = f(n,2,2,2) with f(n,b,c,i) = if n=1 then b else (if c=0 then f(n-1,2,a(i),i+1) else f(n-1,3,c-1,i)). - Reinhard Zumkeller, May 25 2009
a(n) = A080757(n-1) + 1; a(n) = A188068(n) + 2. - Reinhard Zumkeller, Feb 14 2012
a(A188069(n)) = 2; a(A188070(n)) = 3. - Reinhard Zumkeller, Feb 14 2012
MATHEMATICA
f[n_, b_, c_, i_] := f[n, b, c, i] = If[n == 1, b, If[c == 0 , f[n-1, 2, a[i], i+1], f[n-1, 3, c-1, i]]]; a[n_] := f[n, 2, 2, 2]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 15 2013, after Reinhard Zumkeller *)
Table[Floor[n (1 + Sqrt@ 3)] - Floor[(n - 1) (1 + Sqrt@ 3)], {n, 120}] (* Michael De Vlieger, Oct 08 2016 *)
t = {2}; Table[If[t[[i]] == 2, AppendTo[t, #] & /@ {3, 3, 2}, AppendTo[t, #] & /@ {3, 3, 3, 2}], {i, 20}]; t (* Horst H. Manninger, Jan 11 2024 *)
PROG
(Haskell)
a007538 n = f n 2 2 2 where
f 1 b _ _ = b
f n b 0 i = f (n - 1) 2 (a007538 i) (i + 1)
f n b c i = f (n - 1) 3 (c - 1) i
-- Reinhard Zumkeller, Feb 14 2012
CROSSREFS
Sequence in context: A102313 A262955 A276859 * A242285 A238756 A025076
KEYWORD
nonn,easy,nice
STATUS
approved