[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of form 3*2^n - 1.
(Formerly M1395)
15

%I M1395 #60 Jul 18 2024 00:03:23

%S 2,5,11,23,47,191,383,6143,786431,51539607551,824633720831,

%T 26388279066623,108086391056891903,55340232221128654847,

%U 226673591177742970257407,59421121885698253195157962751,30423614405477505635920876929023

%N Primes of form 3*2^n - 1.

%C a(1) = 2, define f(k) = 2k+1, then a(n+1) = least prime fff...(a(n)). After 383 the next terem is 6143. We have f(383) = 767 (composite), f(767) = 1535 (composite), f(1565)=3071(composite), f(3071) = 6143 (prime), hence the next term is 6143= ffff(383). - _Amarnath Murthy_, Jul 13 2005

%C If n is in the sequence and m=(n+1)/3 then m is a solution of the equation, sigma(x+sigma(x))=3x (*). Is it true that there is no other solution of (*)? - _Farideh Firoozbakht_, Dec 05 2005

%D H. Riesel, Prime numbers and computer methods for factorization, Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, pp. 381-384.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A007505/b007505.txt">Table of n, a(n) for n = 1..27</a>

%H Heiko Harborth, <a href="http://ami.ektf.hu/uploads/papers/finalpdf/AMI_41_from57to62.pdf">On h-perfect numbers</a>, Annales Mathematicae et Informaticae, 41 (2013) pp. 57-62.

%H Ernest G. Hibbs, <a href="https://www.proquest.com/openview/4012f0286b785cd732c78eb0fc6fce80">Component Interactions of the Prime Numbers</a>, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.

%H Wilfrid Keller, <a href="http://www.prothsearch.com/riesel2.html">List of primes k*2^n - 1 for k < 300</a>

%H Amelia Carolina Sparavigna, <a href="https://doi.org/10.5281/zenodo.2638790">A recursive formula for Thabit numbers</a>, Politecnico di Torino (Italy, 2019).

%H Amelia Carolina Sparavigna, <a href="https://doi.org/10.18483/ijSci.2044">Composition Operations of Generalized Entropies Applied to the Study of Numbers</a>, International Journal of Sciences (2019) Vol. 8, No. 4, 87-92.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ThabitibnKurrahNumber.html">Thabit ibn Kurrah Number</a>

%H <a href="/index/Pri#riesel">Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime</a>

%F a(n) = 3*2^A002235(n)-1. - _Zak Seidov_, Jul 21 2016

%t Reap[For[n = 0, n <= 103, n++, If[PrimeQ[p = 3*2^n - 1], Sow[p]]]][[2, 1]] (* _Jean-François Alcover_, Dec 12 2012 *)

%t Select[Table[3 2^n - 1, {n, 0, 100}], PrimeQ] (* _Vincenzo Librandi_, Mar 20 2013 *)

%o (Magma) [a: n in [0..200] | IsPrime(a) where a is 3*2^n-1]; // _Vincenzo Librandi_, Mar 20 2013

%o (Haskell)

%o a007505 n = a007505_list !! (n-1)

%o a007505_list = filter ((== 1) . a010051') a083329_list

%o -- _Reinhard Zumkeller_, Sep 10 2013

%o (PARI) for(n=0,100, if(isprime(t=3<<n-1), print1(t", "))) \\ _Charles R Greathouse IV_, Feb 07 2017

%Y Subsequence of A083329.

%Y See A002235 for more terms.

%Y Cf. A039687 (primes of the form 3*2^n+1).

%Y Cf. A010051.

%K nonn,nice

%O 1,1

%A _N. J. A. Sloane_, _Robert G. Wilson v_