[go: up one dir, main page]

login
A007209
Number of partitions of n into parts of sizes {a( )} is a(n).
(Formerly M0315)
1
1, 1, 2, 2, 4, 5, 7, 9, 12, 16, 20, 25, 32, 39, 49, 58, 73, 86, 105, 123, 149, 175, 207, 241, 284, 331, 385, 444, 515, 592, 682, 777, 894, 1015, 1160, 1310, 1492, 1683, 1903, 2140, 2412, 2708, 3037, 3395, 3801, 4239, 4730, 5254, 5852, 6489, 7204, 7965, 8823, 9741
OFFSET
0,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
FORMULA
G.f. A(x) = 1 / ((1 - x) * Product_{k>2} (1 - x^a(k))).
EXAMPLE
G.f. = 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 5*x^5 + 7*x^6 + 9*x^7 + 12*x^8 + 16*x^9 + ...
MAPLE
a:= proc(n) option remember; local x, j, i; `if`(n<6, [1, 1, 2, 2, 4, 5][n+1], coeff(series(1 /mul(1-x^i, i=[{seq(a(j), j=1..n-1)}[]]), x, n+1), x, n)) end: seq(a(n), n=0..60); # Alois P. Heinz, Apr 27 2009
MATHEMATICA
a[0] = a[1] = 1; a[2] = a[3] = 2; a[4] = 4; a[5] = 5; a[n_] := a[n] = SeriesCoefficient[ Series[ 1/((1 - x)*Product[ 1 - x^a[k], {k, 3, n-1}]), {x, 0, n}], n]; Table[a[n], {n, 0, 53}] (* Jean-François Alcover, Dec 09 2011 *)
PROG
(PARI) {a(n) = local(A, k); A = Ser([ 1, 1, 2, 2, 4, 5]); while( n > (k = #A - 1), A = 1 / (1 - x) / prod( i=3, k, 1 - x^polcoeff(A, i), 1 + x^2 * O(x^ polcoeff( A, k))) ); polcoeff( A, n)}; /* Michael Somos, Aug 08 2011 */
CROSSREFS
Sequence in context: A027597 A258318 A027592 * A240215 A166239 A058661
KEYWORD
nonn,nice
EXTENSIONS
More terms from Alois P. Heinz, Apr 27 2009
STATUS
approved