[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Bertrand primes: a(n) is largest prime < 2*a(n-1) for n > 1, with a(1) = 2.
(Formerly M0675)
32

%I M0675 #117 Oct 29 2023 21:20:58

%S 2,3,5,7,13,23,43,83,163,317,631,1259,2503,5003,9973,19937,39869,

%T 79699,159389,318751,637499,1274989,2549951,5099893,10199767,20399531,

%U 40799041,81598067,163196129,326392249,652784471,1305568919,2611137817

%N Bertrand primes: a(n) is largest prime < 2*a(n-1) for n > 1, with a(1) = 2.

%C a(n) < a(n+1) by Bertrand's postulate (Chebyshev's theorem). - _Jonathan Sondow_, May 31 2014

%C Let b(n) = 2^n - a(n). Then b(n) >= 2^(n-1) - 1 and b(n) is a B_2 sequence: 0, 1, 3, 9, 19, 41, 85, 173, 349, ... - _Thomas Ordowski_, Sep 23 2014 See the link for B_2 sequence.

%C These primes can be obtained of exclusive form using a restricted variant of Rowland's prime-generating recurrence (A106108), making gcd(n, a(n-1)) = -1 when GCDs are greater than 1 and less than n (see program). These GCDs are also a divisor of each odd number from a(n) + 2 to 2*a(n-1) - 1 in reverse order, so that this subtraction with -1's invariably leads to the prime. - _Manuel Valdivia_, Jan 13 2015

%C First row of array in A229607. - _Robert Israel_, Mar 31 2015

%C Named after the French mathematician Joseph Bertrand (1822-1900). - _Amiram Eldar_, Jun 10 2021

%D Martin Aigner and Günter M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 1999; see p. 7.

%D Martin Griffiths, The Backbone of Pascal's Triangle, United Kingdom Mathematics Trust (2008), page 115. [From _Martin Griffiths_, Mar 28 2009]

%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 344.

%D Ivan Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 189.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Robert G. Wilson v, <a href="/A006992/b006992.txt">Table of n, a(n) for n = 1..1001</a> (first 100 terms from T. D. Noe)

%H Paul Erdős, <a href="http://www.renyi.hu/~p_erdos/1932-01.pdf">Beweis eines Satzes von Tschebyschef</a> (in German), Acta Litt. Sci. Szeged, Vol. 5 (1932), pp. 194-198.

%H Paul Erdős, <a href="https://www.renyi.hu/~p_erdos/1934-01.pdf">A theorem of Sylvester and Schur</a>, J. London Math. Soc., Vol. 9 (1934), pp. 282-288.

%H Srinivasa Ramanujan, <a href="http://ramanujan.sirinudi.org/Volumes/published/ram24.html">A proof of Bertrand's postulate</a>, J. Indian Math. Soc., Vol. 11 (1919), pp. 181-182.

%H Vladimir Shevelev, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL15/Shevelev/shevelev19.html">Ramanujan and Labos primes, their generalizations, and classifications of primes</a>, J. Integer Seq., Vol. 15 (2012) Article 12.5.4.

%H Jonathan Sondow, <a href="http://arxiv.org/abs/0907.5232">Ramanujan primes and Bertrand's postulate</a>, arXiv:0907.5232 [math.NT], 2009-2010.

%H Jonathan Sondow, <a href="http://www.jstor.org/stable/40391170">Ramanujan primes and Bertrand's postulate</a>, Amer. Math. Monthly, Vol. 116, No. 7 (2009), pp. 630-635.

%H Jonathan Sondow and Eric Weisstein, <a href="http://mathworld.wolfram.com/BertrandsPostulate.html">MathWorld: Bertrand's Postulate</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/B2-Sequence.html">B2 Sequence</a>.

%H Robert G. Wilson, V, <a href="/A006992/a006992.pdf">Letter to N. J. A. Sloane, Oct. 1993</a>.

%F a(n+1) = A007917(2*a(n)). - _Reinhard Zumkeller_, Sep 17 2014

%F Limit_{n -> infinity} a(n)/2^n = 0.303976447924... - _Thomas Ordowski_, Apr 05 2015

%p A006992 := proc(n) option remember; if n=1 then 2 else prevprime(2*A006992(n-1)); fi; end;

%t bertrandPrime[1] = 2; bertrandPrime[n_] := NextPrime[ 2*a[n - 1], -1]; Table[bertrandPrime[n], {n, 40}]

%t (* Second program: *)

%t NestList[NextPrime[2#, -1] &, 2, 40] (* _Harvey P. Dale_, May 21 2012 *)

%t k = 3; a[n_] := If[GCD[n,k] > 1 && GCD[n, k] < n, -1, GCD[n, k]]; Select[Differences@Table[k = a[n] + k, {n, 2611137817}], # > 1 &] (* _Manuel Valdivia_, Jan 13 2015 *)

%o (PARI) print1(t=2);for(i=2,60,print1(", "t=precprime(2*t))) \\ _Charles R Greathouse IV_, Apr 01 2013

%o (Haskell)

%o a006992 n = a006992_list !! (n-1)

%o a006992_list = iterate (a007917 . (* 2)) 2

%o -- _Reinhard Zumkeller_, Sep 17 2014

%o (Python)

%o from sympy import prevprime

%o l = [2]

%o for i in range(1, 51):

%o l.append(prevprime(2 * l[i - 1]))

%o print(l) # _Indranil Ghosh_, Apr 26 2017

%Y Cf. A055496, A163961.

%Y See A185231 for another version.

%Y Cf. A007917, A229607, A295262.

%K nonn,nice

%O 1,1

%A _N. J. A. Sloane_, _Robert G. Wilson v_

%E Definition completed by _Jonathan Sondow_, May 31 2014

%E B_2 sequence link added by _Wolfdieter Lang_, Oct 09 2014