OFFSET
0,3
COMMENTS
a(n) = A006997(3^n-1).
It appears that, aside from the first term, this is the (L)-sieve transform of A016789 ={2,5,8,11,...,3n+2....}. This has been verified up to a(30)=311071. See A152009 for the definition of the (L)-sieve transform. - John W. Layman, Nov 20 2008
a(n) is also the largest-index square reachable in n jumps if we start at square 0 of the Infinite Sidewalk. - Jose Villegas, Mar 27 2023
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
B. Chen, R. Chen, J. Guo, S. Lee et al, On Base 3/2 and its sequences, arXiv:1808.04304 [math.NT], 2018.
Joseph Gerver, James Propp and Jamie Simpson, Greedily partitioning the natural numbers into sets free of arithmetic progressions Proc. Amer. Math. Soc. 102 (1988), no. 3, 765-772.
D. R. Hofstadter, Eta-Lore [Cached copy, with permission]
D. R. Hofstadter, Pi-Mu Sequences [Cached copy, with permission]
D. R. Hofstadter and N. J. A. Sloane, Correspondence, 1977 and 1991
James Propp and N. J. A. Sloane, Email, March 1994
Jane Street, Traversing the Infinite Sidewalk (2023).
FORMULA
a(n) = floor((3a(n-1)+2)/2).
a(n) = -1 + floor(c*(3/2)^n) where c=1.081513668589844877304633988599549408710737041542024954790295591585622666484989650922411026555488940... - Benoit Cloitre, Jan 10 2002
a(n+1) = (3*a(n))/2+1 if a(n) is even. a(n+1) = (3*a(n)+1)/2 if a(n) is odd. - Miquel Cerda, Jun 15 2019
MATHEMATICA
a[0] = 0; a[n_] := a[n] = Floor[(3 a[n-1] + 2)/2];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 01 2018 *)
PROG
(PARI) a(n)=if(n<1, 0, floor((3*a(n-1)+2)/2))
(Haskell)
a006999 n = a006999_list !! n
a006999_list = 0 : map ((`div` 2) . (+ 2) . (* 3)) a006999_list
-- Reinhard Zumkeller, Oct 26 2011
CROSSREFS
The constant c is 2/3*K(3) (see A083286). - Ralf Stephan, May 29 2003
Cf. A003312.
First differences are in A073941.
Cf. A005428 (first differences).
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, D. R. Hofstadter, and James Propp, Jul 15 1977
EXTENSIONS
More terms from James A. Sellers, Feb 06 2000
STATUS
approved