[go: up one dir, main page]

login
A006972
Lucas-Carmichael numbers: squarefree composite numbers k such that p | k => p+1 | k+1.
(Formerly M5450)
48
399, 935, 2015, 2915, 4991, 5719, 7055, 8855, 12719, 18095, 20705, 20999, 22847, 29315, 31535, 46079, 51359, 60059, 63503, 67199, 73535, 76751, 80189, 81719, 88559, 90287, 104663, 117215, 120581, 147455, 152279, 155819, 162687, 191807, 194327, 196559, 214199
OFFSET
1,1
COMMENTS
Wright proves that this sequence is infinite (Main Theorem 2). - Charles R Greathouse IV, Nov 03 2015
Conjecture: if k = p*q*r, p = a*d - 1, q = b*d - 1, r = c*d - 1 are distinct odd primes, with d = gcd(p + 1, q + 1, r + 1) and a*b*c*d divides k + 1, then k is a Lucas-Carmichael number. - Davide Rotondo, Dec 23 2020
A composite k is a Lucas-Carmichael number if and only if k | A322702(k+1). - Thomas Ordowski, May 06 2021
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 399, p. 89, Ellipses, Paris 2008.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Donovan Johnson, Table of n, a(n) for n = 1..10000 (first 550 terms from Paolo P. Lava)
Ed Copeland and Brady Haran, Something special about 399, Numberphile video (2015).
Sridhar Tamilvanan and Subramani Muthukrishnan, On Lucas-Carmichael Integer, arXiv:2311.08012 [math.NT], 2023.
Samuel S. Wagstaff, Jr., Ramanujan's Taxicab Number and its Ilk, Purdue Univ. (2024). See p. 2.
Thomas Wright, There are infinitely many elliptic Carmichael numbers, arXiv:1609.00231 [math.NT], 2016.
MAPLE
with(numtheory):
a:= proc(n) option remember; local k; for k from 1+
`if`(n=1, 3, a(n-1)) while isprime(k) or not issqrfree(k)
or add(irem(k+1, i+1), i=factorset(k))>0 do od; k
end:
seq(a(n), n=1..15); # Alois P. Heinz, Apr 05 2018
MATHEMATICA
Select[ Range[ 2, 10^6 ], !PrimeQ[ # ] && Union[ Transpose[ FactorInteger[ # ] ][ [ 2 ] ] ] == {1} && Union[ Mod[ # + 1, Transpose[ FactorInteger[ # ] ][ [ 1 ] ] + 1 ] ] == {0} & ]
PROG
(PARI) is(n)=my(f=factor(n)); for(i=1, #f[, 1], if((n+1)%(f[i, 1]+1) || f[i, 2]>1, return(0))); #f[, 1]>1 \\ Charles R Greathouse IV, Sep 23 2012
(PARI)
lucas_carmichael(A, B, k) = A=max(A, vecprod(primes(k+1))\2); (f(m, l, lo, k) = my(list=List()); my(hi=min(sqrtint(B+1)-1, sqrtnint(B\m, k))); if(lo > hi, return(list)); if(k==1, lo=max(lo, ceil(A/m)); my(t=lift(-1/Mod(m, l))); while(t < lo, t += l); forstep(p=t, hi, l, if(isprime(p), my(n=m*p); if((n+1)%(p+1) == 0, listput(list, n)))), forprime(p=lo, hi, if(gcd(m, p+1) == 1, list=concat(list, f(m*p, lcm(l, p+1), p+1, k-1))))); list); f(1, 1, 3, k);
upto(n) = my(list=List()); for(k=3, oo, if(vecprod(primes(k+1))\2 > n, break); list=concat(list, lucas_carmichael(1, n, k))); vecsort(Vec(list)); \\ Daniel Suteu, Dec 01 2023
CROSSREFS
Intersection of A024556 and A056729.
Cf. A216925, A216926, A216927, A217002, A217003, A217091 (terms having 3, 4, 5, 6, 7 and 8 factors).
Sequence in context: A158317 A227008 A253597 * A216925 A292573 A299213
KEYWORD
nonn
STATUS
approved