[go: up one dir, main page]

login
A006283
Pierce expansion for 1 / Pi.
(Formerly M3092)
10
3, 22, 118, 383, 571, 635, 70529, 375687, 399380, 575584, 699357, 1561065, 1795712, 194445473, 253745996, 3199003690, 3727084011, 6607433185, 16248462801, 172940584814, 313728984965, 796022309187, 5348508258636, 5962546521072, 97497255361780, 121347007731845
OFFSET
0,1
COMMENTS
Sequence can be produced with the unit circle: a(1) = number of diameter length arcs in circle rounded down to nearest integer (remainder arc = x_1). a(2) = number of x_1 length arcs in circle rounded down to nearest integer (remainder arc = x_2). a(3) = number of x_2 length arcs in circle rounded down to nearest integer (remainder arc = x_3). And so on ... . - Peter Woodward, Sep 08 2016
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Jeffrey Shallit, Some predictable Pierce expansions, Fib. Quart., 22 (1984), 332-335.
Eric Weisstein's World of Mathematics, Pierce Expansion
EXAMPLE
Let x_0 = 1/Pi = 0.318309886... and a(0) = floor(1/x_0) = 3. Then set x_1 = 1 - a_0*x_0 = 0.0450703..., and a(1) = floor(1/x_1) = 22. Then x_2 = 1 - a_1*x_1 = 0.008452..., and a(2) = floor(1/x2) = 118. - Michael B. Porter, Sep 09 2016
MATHEMATICA
PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[1/Pi, 8!], 50] (* G. C. Greubel, Nov 13 2016 *)
PROG
(PARI) default(realprecision, 100000); r=Pi; for(n=1, 100, s=(r/(r-floor(r))); print1(floor(r), ", "); r=s) \\ Benoit Cloitre [amended by Georg Fischer, Nov 20 2020]
CROSSREFS
Cf. A154956 (analog for 2/Pi).
Sequence in context: A352027 A061182 A143552 * A232017 A100511 A033506
KEYWORD
nonn
STATUS
approved