[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006010
Number of paraffins (see Losanitsch reference for precise definition).
(Formerly M3897)
4
1, 5, 20, 52, 117, 225, 400, 656, 1025, 1525, 2196, 3060, 4165, 5537, 7232, 9280, 11745, 14661, 18100, 22100, 26741, 32065, 38160, 45072, 52897, 61685, 71540, 82516, 94725, 108225, 123136, 139520, 157505, 177157, 198612, 221940, 247285, 274721, 304400
OFFSET
1,2
COMMENTS
This is also the square of the sum of the odd numbers plus the square of the sum of the even numbers, up to n. E.g., a(4) = (1+3)^2 + (2+4)^2 = 52. - Scott R. Shannon, Feb 20 2019
The area of a square whose side is a segment connecting the ends of a broken line (snake), the adjacent links of which are perpendicular and equal to the numbers 1, 2, 3, 4, ..., n. For example, a(5) = 9^2 + 6^2 = 117. - Nicolay Avilov, Aug 02 2022
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Nicolay Avilov, The problem of a broken line in a square (in Russian).
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
FORMULA
Sum of [ 1, 3, 9, ... ](A005994) + [ 0, 0, 1, 3, 9, ... ] + 2*[ 0, 1, 5, 15, 35, ... ](binomial(n, 4)).
If n is odd then a(n) = (1/8) * (n^4 + 2*n^3 + 2*n^2 + 2*n + 1) = Det(Transpose[M]*M) where M is the 2 X 3 matrix whose rows are [(n-1)/2, (n-1)/2], [(n-1)/2 + 1, 0] and [(n-1)/2 + 1, (n-1)/2 + 1]. If n is even then a(n) = (1/8) * (n^4 + 2*n^3 + 2*n^2) = Det(Transpose[M]*M) where M is the 2 X 3 matrix whose rows are [n/2, 0], [n/2, n/2] and [n/2 + 1, 0]. - Gerald McGarvey, Oct 30 2007
G.f.: -x*(x^4+2*x^3+6*x^2+2*x+1) / ((x-1)^5*(x+1)^2). - Colin Barker, Mar 20 2013
E.g.f.: (x*(7 + 15*x + 8*x^2 + x^3)*cosh(x) + (1 + 5*x + 15*x^2 + 8*x^3 + x^4)*sinh(x))/8. - Stefano Spezia, Jul 08 2020
MATHEMATICA
CoefficientList[Series[-(x^4 + 2 x^3 + 6 x^2 + 2 x + 1)/((x - 1)^5 (x + 1)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 14 2013 *)
LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {1, 5, 20, 52, 117, 225, 400}, 40] (* Harvey P. Dale, Dec 13 2018 *)
PROG
(PARI) Vec(-x*(x^4+2*x^3+6*x^2+2*x+1)/((x-1)^5*(x+1)^2) + O(x^100)) \\ Colin Barker, Oct 05 2015
CROSSREFS
Cf. A005994, A186424 (2nd differences), A317614 (1st differences), A335648 (partial sums).
Sequence in context: A007045 A102227 A173034 * A270334 A008524 A055383
KEYWORD
nonn,easy
EXTENSIONS
More terms from David W. Wilson
STATUS
approved