[go: up one dir, main page]

login
A006014
a(n+1) = (n+1)*a(n) + Sum a(k)*a(n-k).
(Formerly M1790)
5
1, 2, 7, 32, 178, 1160, 8653, 72704, 679798, 7005632, 78939430, 965988224, 12762344596, 181108102016, 2748049240573, 44405958742016, 761423731533286, 13809530704348160
OFFSET
1,2
REFERENCES
D. E. Knuth, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Jimmy Devillet and Bruno Teheux, Associative, idempotent, symmetric, and order-preserving operations on chains, arXiv:1805.11936 [math.RA], 2018.
E. Duchi, V. Guerrini, S. Rinaldi, and G. Schaeffer, Fighting fish. J. Phys. A, Math. Theor. 50, No. 2, Article ID 024002, 16 p. (2017), chapter 4.
FORMULA
G.f. A(x) satisfies A(x) = x * (1 + A(x) + A(x)^2 + x * A'(x)). - Michael Somos, Jul 24 2011
Conjecture: a(n) = Sum_{k=0..2^(n-1) - 1} b(k) for n > 0 where b(2n+1) = b(n), b(2n) = b(n) + b(n - 2^f(n)) + b(2n - 2^f(n)) + b(A025480(n-1)) for n > 0 with b(0) = b(1) = 1 and where f(n) = A007814(n). - Mikhail Kurkov, Nov 19 2021
a(n) ~ cosh(sqrt(3)*Pi/2) * n! / Pi = A073017 * n!. - Vaclav Kotesovec, Nov 21 2024
EXAMPLE
x + 2*x^2 + 7*x^3 + 32*x^4 + 178*x^5 + 1160*x^6 + 8653*x^7 + 72704*x^8 + ...
MATHEMATICA
Nest[Append[#1, #1[[-1]] (#2 + 1) + Total@ Table[#1[[k]] #1[[#2 - k]], {k, #2 - 1}]] & @@ {#, Length@ #} &, {1}, 17] (* Michael De Vlieger, Aug 22 2018 *)
(* or *)
a[1] = 1; a[n_] := a[n] = n a[n-1] + Sum[a[k] a[n-1-k], {k, n-2}]; Array[a, 18] (* Giovanni Resta, Aug 23 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = k * A[k-1] + sum( j=1, k-2, A[j] * A[k-1-j])); A[n])} /* Michael Somos, Jul 24 2011 */
CROSSREFS
Similar recurrences: A124758, A243499, A284005, A329369, A341392.
Cf. A073017.
Sequence in context: A005362 A059439 A190123 * A121555 A265165 A351813
KEYWORD
nonn,easy,changed
STATUS
approved