OFFSET
6,2
COMMENTS
The complete sequence by R. K. Guy in "Anyone for Twopins?" starts with a(0) = 0, a(1) = 1, a(2) = 1, a(3) = 1, a(4) = 1 and a(5) = 1. The formula for a(n) confirms these values. - Johannes W. Meijer, Aug 26 2013
REFERENCES
R. K. Guy, ``Anyone for Twopins?,'' in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 6..1000
R. K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]
FORMULA
G.f.: (x^6*(1-x^2+x^3-2*x^6-x^7-x^8-x^9-x^10-x^11))/((x^3-x+1)*(x^3+x-1)*(x^6+x^2-1)). - Ralf Stephan, Apr 22 2004
a(n) = Sum_{k=0..floor((n-1)/2)} A228570(n-1, 2*k), n >= 6. - Johannes W. Meijer, Aug 26 2013
MATHEMATICA
CoefficientList[Series[((1 - x^2 + x^3 - 2*x^6 - x^7 - x^8 - x^9 - x^10 - x^11))/((x^3 - x + 1) (x^3 + x - 1) (x^6 + x^2 - 1)), {x, 0, 50}], x] (* Wesley Ivan Hurt, May 03 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended by Johannes W. Meijer, Aug 26 2013
STATUS
approved