[go: up one dir, main page]

login
A005682
Number of Twopins positions.
(Formerly M1106)
3
1, 2, 4, 8, 15, 28, 51, 92, 165, 294, 522, 924, 1632, 2878, 5069, 8920, 15686, 27570, 48439, 85080, 149405, 262320, 460515, 808380, 1418916, 2490432, 4370944, 7671188, 13462945, 23627078, 41464296, 72766972, 127700055, 224101844, 393276447, 690158844, 1211153337
OFFSET
5,2
REFERENCES
R. K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(n) = 2a(n-1) - a(n-4) - a(n-6). - John W. Layman
G.f.: x^5/((x^3+x^2-1)*(x^3-x^2+2*x-1)). - Ralf Stephan, Apr 22 2004
a(n) = (A005251(n+1)-A000931(n+5))/2. - R. J. Mathar, Dec 10 2011
MAPLE
A005682:=1/((z**3-z**2+2*z-1)*(z**3+z**2-1)); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation for offset 0
MATHEMATICA
CoefficientList[ Series[x^5/((x^3 + x^2 - 1)(x^3 - x^2 + 2 x - 1)), {x, 0, 41}], x] (* or *)
a[n_] := a[n] = 2 a[n - 1] - a[n - 4] - a[n - 6]; a[0] = a[1] = a[2] = a[3] = a[4] = 0; a[5] = 1; Array[a, 42, 0] (* or *)
LinearRecurrence[{2, 0, 0, -1, 0, -1}, {0, 0, 0, 0, 0, 1}, 38] (* Robert G. Wilson v, Jun 22 2014 *)
CROSSREFS
Sequence in context: A334635 A358836 A029907 * A114833 A065617 A062065
KEYWORD
nonn,easy
EXTENSIONS
More terms from David W. Wilson
STATUS
approved