Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4454 #32 Apr 14 2021 20:07:17
%S 1,1,7,97,2911,180481,22740607,5776114177,2945818230271,
%T 3010626231336961,6159741269315422207,25217980756577338515457,
%U 206535262396368402441592831,3383460668577307168798173757441
%N Certain subgraphs of a directed graph (inverse binomial transform of A005321).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Michael De Vlieger, <a href="/A005014/b005014.txt">Table of n, a(n) for n = 1..81</a>
%H E. Andresen and K. Kjeldsen, <a href="http://dx.doi.org/10.1016/0012-365X(76)90054-6">On certain subgraphs of a complete transitively directed graph</a>, Discrete Math. 14 (1976), no. 2, 103-119.
%H Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, <a href="https://arxiv.org/abs/2012.13570">Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow</a>, arXiv:2012.13570 [math.CO], 2020.
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F a(n) = (-1)^n + (p(n) + p(n-1))Sum_{j=0..n-1} (-1)^j/p(j), where p(0)=1, p(k) = Product_{i=1..k} (2^i - 1) for k > 0. - _Emeric Deutsch_, Jan 23 2005
%F a(n) = (2^n-2)*a(n-1) - (-1)^n. - _Vladeta Jovovic_, Aug 20 2006
%F G.f.: Sum_{n>=0} (x^n*Product_{i=1..n} (2^i - 1)/(1 + 2^i*x)). - _Vladeta Jovovic_, Mar 10 2008
%p p:=proc(n) if n=0 then 1 else product(2^i-1,i=1..n) fi end: a:=n->(-1)^n+(p(n)+p(n-1))*sum((-1)^j/p(j),j=0..n-1): seq(a(n),n=1..14); # _Emeric Deutsch_, Jan 23 2005
%t a[1] = 1; a[n_] := a[n] = (2^n-2)*a[n-1]-(-1)^n; Table[a[n], {n, 1, 14}] (* _Jean-François Alcover_, Jan 17 2014, after _Vladeta Jovovic_ *)
%Y Pairwise sums of A005327.
%K nonn
%O 1,3
%A _N. J. A. Sloane_
%E More terms from _Vladeta Jovovic_, Aug 20 2006