[go: up one dir, main page]

login
A004742
Numbers whose binary expansion does not contain 101.
10
0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 15, 16, 17, 18, 19, 24, 25, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 48, 49, 50, 51, 56, 57, 60, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 76, 78, 79, 96, 97, 98, 99, 100, 102, 103, 112, 113, 114, 115, 120, 121, 124, 126, 127
OFFSET
1,3
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
FORMULA
Sum_{n>=2} 1/a(n) = 6.198475910942069028389983717965787117743378665090593775808705963863146498248... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 13 2022
MATHEMATICA
Select[Range[0, 130], !StringContainsQ[IntegerString[#, 2], "101"] &] (* Amiram Eldar, Feb 13 2022 *)
PROG
(PARI) is(n)=n=binary(n); for(i=3, #n, if(n[i]&&n[i-2]&&!n[i-1], return(0))); 1 \\ Charles R Greathouse IV, Mar 26 2013
(PARI) is(n)=while(n>4, if(bitand(n, 7)==5, return(0)); n>>=1); 1 \\ Charles R Greathouse IV, Feb 11 2017
(PARI) is(n)=!bitand(bitand(n, n>>2), bitneg(n>>1)) \\ Charles R Greathouse IV, Oct 28 2021
(PARI) searchLE(S, x)=my(t=setsearch(S, x)); if(t, t, setsearch(S, x, 1)-1); \\ finds last element <= x
expand(~v, lim)=my(b=exponent(v[#v]+1), B=1<<b, mx=searchLE(v, lim-B), block1=setsearch(v, B\4-1), block2=setsearch(v, B\2)); for(i=1, min(block1, mx), listput(v, B+v[i])); for(i=block2, mx, listput(v, B+v[i])); if(v[#v]>lim, listpop(~v));
list(lim)=lim\=1; if(lim<5, return(if(lim<0, [], [0..lim]))); my(v=List([0..3])); for(b=3, exponent(lim+1), expand(~v, 2^b-1)); expand(~v, lim); Vec(v)
(Haskell)
a004742 n = a004742_list !! (n-1)
a004742_list = filter f [0..] where
f x = x < 4 || x `mod` 8 /= 5 && f (x `div` 2)
-- Reinhard Zumkeller, Jul 01 2013
CROSSREFS
Cf. A007088; A003796 (no 000), A004745 (no 001), A004746 (no 010), A004744 (no 011), A003754 (no 100), A004743 (no 110), A003726 (no 111).
Sequence in context: A366976 A031998 A023759 * A277817 A336231 A100290
KEYWORD
nonn,base,easy
STATUS
approved