[go: up one dir, main page]

login
A004744
Numbers whose binary expansion does not contain 011.
9
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 48, 49, 50, 52, 53, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 68, 69, 72, 73, 74, 80, 81, 82, 84, 85, 96, 97, 98, 100, 101, 104, 105
OFFSET
1,3
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
FORMULA
Sum_{n>=2} 1/a(n) = 6.084750966700965350831194838591995529232464122788387705746226526437263331240... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 13 2022
MATHEMATICA
Select[Range[0, 110], !MemberQ[Partition[IntegerDigits[#, 2], 3, 1], {0, 1, 1}]&] (* Harvey P. Dale, Oct 15 2013 *)
PROG
(PARI) is(n)=n=binary(n); for(i=3, #n, if(n[i]&&n[i-1]&&!n[i-2], return(0))); 1 \\ Charles R Greathouse IV, Mar 26 2013
(PARI) is(n)=while(n>10, if(bitand(n, 7)==3, return(0)); n>>=1); 1 \\ Charles R Greathouse IV, Feb 11 2017
(Haskell)
a004744 n = a004744_list !! (n-1)
a004744_list = filter f [0..] where
f x = x < 4 || x `mod` 8 /= 3 && f (x `div` 2)
-- Reinhard Zumkeller, Jul 01 2013
CROSSREFS
Cf. A007088; A003796 (no 000), A004745 (no 001), A004746 (no 010), A003754 (no 100), A004742 (no 101), A004743 (no 110), A003726 (no 111).
Sequence in context: A335523 A374519 A328869 * A171987 A332111 A072226
KEYWORD
nonn,base,easy
STATUS
approved