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Abstract 

Using parametric and nonparametric methods, inflation persistence is examined 

through the relationship between the exclusions-from-core measure of inflation and 

total inflation for two sample periods and five in-sample forecast horizons ranging 

from one to twelve quarters over fifty vintages of real-time data in two measures of 

inflation: personal consumption expenditure and the consumer price index.  This 

paper finds that core inflation is only able to capture the overall trend of total inflation 

for the twelve-quarter in-sample forecast horizon using the consumer price index in 

both the parametric and nonparametric models in the longer sample period.  The 

nonparametric model outperforms the parametric model for both data samples and 

for all five in-sample forecast horizons. 
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1. Introduction 

In terms of understanding the general trend of inflation and forecasting, data 

revisions of inflation measures also have the possibility of having a short-run effect 

just as changes in the relative price level and exogenous supply shocks to a given 

market, which can affect the formation of inflation expectations in the short-run and 

long-run (Gagnon 2008).  Hypothetically, if inflation measures are typically 

underestimated and if a pattern can be determined, then the Federal Reserve can 

incorporate this information into their inflation forecast, which will in turn have the 

possibility of affecting the general public’s view of expected inflation, an integral part 

of short-term inflation (Silver 1997).   The general public’s expectation of future 

inflation is of extreme importance to monetary policy since it helps to determine 

future interest rates aside from having an affect on the effectiveness of monetary 

policy as the rush in the early part of 2008 demonstrated when investors, who were, at 

first, merely concerned about potential higher future inflation rates, invested in 

commodities such as oil and gold.  This speculation drove up prices, especially in oil 

futures, which had a negative and very expensive ripple effect throughout the entire 

economy. If the general public believes that core inflation is not a true measure of the 

price changes they see on a daily basis, then they will disregard the core inflation 

measure, which could adversely affect people’s expectations about inflation thereby 

affecting the transparency required for the transmission of monetary policy (Johnson 

1999, Clark 2001). 

The definition of core inflation varies by country with the U.S. definition of core 

inflation generally being total inflation minus the volatile components of food and 

energy, which is specifically examined in this paper.  Generally, core inflation is 

thought of as a long-run concept, but core inflation can have implications in the short- 

and medium-run especially in regards to policy matters.  The primary intent of core 

inflation is to capture the underlying trend of total inflation by not reflecting the 

changes in relative prices or temporary supply shocks that should be eliminated rather 

rapidly.  The implication of this primary intent is that core inflation should then have 

some predictive capability in regards to total future inflation at some forecast horizon 

that could include the relative short- and medium-run (Clark 2001). 

The purpose of this paper is to investigate whether core inflation is able to 

predict the overall trend of total inflation, and if so, how fast, does this occur.  In-

sample forecasting is used to see if the exclusions-from-core measures of inflation 
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have an impact on total inflation.  Suppose core inflation is able to capture the 

underlying trend of total inflation, this implies that core inflation is an unbiased 

predictor of total inflation and should be continued to be used in monetary policy.  In 

this paper, inflation persistence is examined through the use of exclusions-from-core 

measures of inflation over a five-period in-sample forecast horizon of one, two, four, 

eight, and twelve quarts using real-time data, which includes examining the effect of 

data revisions for fifty vintages of real-time data in two sample periods.  Two types of 

core and total inflation measures, Personal Consumption Expenditures (PCE) and the 

Consumer Price Index (CPI), are used to examine the effect that the exclusions-from-

core has on total inflation. 

The performance of PCE and CPI as an inflation measure is compared to see if 

the inflation measure has an effect on inflation persistence.  Regarding PCE, the 

Federal Reserve currently uses the PCE to forecast core and total inflation since the 

PCE does not have as large of an upward bias as CPI due to the substitution effect.  The 

PCE covers the whole consumption side of the economy as opposed to only the goods 

and services purchased by the typical urban consumer, which the CPI covers.  The PCE 

is also subject to revision when additional source data becomes available, which 

enables a better break down between a change in real consumption and a change in 

consumer prices (Croushore 2007).  Alternatively, as stated by Rich and Steindel 

(2005), since the price of capital goods purchased by firms is difficult to measure as 

are goods purchased by the government such as education, a consumer-based price 

index such as the CPI may be a better measure of inflation because production costs 

are passed along to the consumer as is government purchases through the form of 

taxation, which decreases consumers’ purchasing ability.  In addition, the CPI is also an 

inflation measure that is more familiar to the general public.  Since it is not revised, the 

CPI might appear to be more reliable to the general public and thereby, better able to 

capture the general trend of inflation (Lafléche and Armour 2006).   Hence, as one can 

see, a case for using either PCE or the CPI as a measure of inflation can easily be made. 

Although this paper concerns the U.S. PCE and the U.S. CPI, much of the existing 

literature in this area has been done in regards to the Canadian CPI.  Lafléche and 

Armour (2006), upon whose work this paper is heavily based, are unable to reject the 

null of unbiasedness in regards to the CPI core measure of inflation at the twelve-

month in-sample horizon.   Johnson (1999) also examines the relationship between 

core and total inflation using a weighted form of CPI for an in-sample forecast horizon 

of six, twelve, and eighteen months.  At the six-month in-sample forecast horizon, 

Johnson (1999) finds unbiasedness, meaning that the core weighted CPI is able to 

capture the general trend of inflation, but rejects the null of unbiasedness at the 
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twelve- and eighteen-month in-sample forecast horizons due to overestimation.  The 

relationship between the excluded-from-core measure of weighted CPI and the h-

period ahead difference in total inflation is greater than unity with h referring to any 

given length of an in-sample forecast horizon. 

In addition, Cogley (2002) finds that an exponentially smoothed measure of 

inflation outperforms various measures of CPI and finds unbiasedness at the eight- to 

ten-quarter in-sample forecast horizons.  Analogous to Cogley (2002), Rich and 

Steindel (2005) examine the in- and out-of-sample forecasts of PCE, CPI, and Cogley’s 

(2002) exponential smoothed measure of inflation.  Rich and Steindel (2005) fail to 

reject the null of unbiasedness at the 10% significance level for the twelve-quarter in-

sample forecast horizon for PCE when a longer sample period that begins in 1959 is 

used, yet they reject the null of unbiasedness for the twelve-quarter in-sample forecast 

horizon when the data sample begins in 1978 for both PCE and CPI, and hence obtain 

contrary findings when the sample period is partitioned.  The reason for rejecting the 

null of unbiasedness for the second sample, as stated by Rich and Steindel (2005), is 

due to the inflexibility of the parametric methodology, which is relaxed in this paper 

through the use of nonparametric methodology. 

For this paper, in order to examine whether core inflation is an unbiased 

estimator of general inflation, the regression model of Lafléche and Armour (2006), 

which is based upon Cogley (2002), is used in a recursive parametric and 

nonparametric framework that is implemented using real-time data with the quarterly 

vintages of the real-time data ranging from V_1996:Q1 to V_2008:Q2.1  The regression 

model involves regressing the h-period ahead change in total inflation at time t onto 

the difference between core inflation at time t and total inflation at time t, which is the 

exclusions-from-core measure of inflation at time t.  If core inflation is an unbiased 

predictor of inflation, then the estimated vertical intercept term should jointly be zero 

with the estimated slope coefficient being unity. 

Along the lines of Rich and Steindel (2005) and Clark (2001), two data samples 

are examined for inflation persistence with the first data sample beginning from 

1960:Q1 and the partitioned data sample beginning from 1984:Q1, which takes into 

account structural breaks.  The findings of this paper are that unbiasedness is sensitive 

to the following: inflation measure, data sample, and vintage. 

                                                

1 To make it easier to determine when a particular vintage of a real-time dataset as opposed to 

a given observation is being discussed, the notation of “V_” will appear before the vintage of the 

real-time dataset.  For instance, V_1996:Q1 refers to the vintage of the real-time dataset 

released in the middle of the first quarter of 1996 with the observable data ranging from 

1959:Q4 to 1995:Q4 for the first sample period.    
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Although nonparametrics is not specifically mentioned by Granger (2008), 

Granger states that the next forefront in non-linear research is time-varying 

parameters.  For the nonparametric estimation of the regression model, the kernel-

weighted least squares method (KWLS) is used, and the main reason for using 

nonparametric methodology is its ability to provide time-varying local regression 

estimators that are easy to interpret for policy matters without the need of 

partitioning the dataset, which is commonly done in this literature.   Another reason 

for using nonparametric methodology is that the empirical distribution of inflation is 

typically a fat-tailed distribution, and nonparametrics is better able to capture 

information in the tail regions  as opposed to an ordinary least squares (OLS) model 

(Clark 2001). 

In regards to the parametric estimation, OLS is used to capture the average 

behaviour of the inter-relationship between the variables and is used as a benchmark 

comparison for its nonparametric counterparts.   For instance, in an OLS framework, 

Johnston (1999) isolates and examines separately high and low-to-stable inflationary 

periods in the Canadian economy when parametric modelling is used.  With 

nonparametrics, the partitioning of the sample period is not needed in order to isolate 

periods of high and low-to-stable inflationary periods.  The window width, which is 

the smoothing parameter, along with the kernel, i.e. the smoothing function, is able to 

combine like-with–like by giving a higher weight to observations closer to the 

conditioning observation in terms of metric distance and less weight, i.e. less 

importance as the metric distance increases between any given observation and the 

conditioning observation.  This is useful in the sense that the kernel automatically 

partitions the dataset while using the entire dataset thereby, being better able to 

capture the underlying trend with the inclusion of the tail regions.   Within each 

window width, a local linear least squares (LLLS) line conditional on any given 

observation within the dataset is fitted with the inclusion of an intercept term that 

permits one to interpret the parameters of this local line as one would for its  OLS 

counterpart. 

Another reason for using nonparametric methodology follows heuristically 

along the same line of reasoning as Cogley (2002), which presents an adaptive 

measure of core inflation that permits learning with the assistance of a predetermined 

constant gain parameter such as the one used in recursive discounted least squares, 

which discounts old data while assigning new data a constant weight.  Nonparametrics 

is able to provide an adaptive framework by providing a dynamic gain parameter that 

is data-driven though the use of its weighing kernel, which gives more weight, i.e.  

higher importance to observations that are similar to the conditioning observation in 
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terms of metric distance.  For instance, a low measure of inflation is given more 

importance in a low inflationary period, and increasingly less weight as the similarity 

dissipates.  Hence, new data is able to be accessed for importance, conditional on a 

given observation, and incorporated appropriately.  For this paper, the window width, 

which is the smoothing parameter of the weighting kernel that facilitates this 

comparison, is obtained through the use of the integrated residual squares criterion 

(IRSC) as proposed by Fan and Gijbels (1995).2 

Yet another reason for using nonparametric methodology is its potential to 

explain the differing results obtained by Lafléche and Armour (2006) and Johnson 

(1999), which could be due to the larger sample size or due to the averaging method of 

OLS.3  The use of real time data also permits the tracing of the effects of averaging 

across vintages, which is one of the benefits of using real time data (Elliott 2002). 

In order to statistically test whether core inflation is an unbiased measure of 

total inflation, the null of unbiasedness is tested through the use of the F-test for the 

parametric and global nonparametric models and a likelihood ratio (LR) test for the 

nonparametric model.4 

To briefly summarize the empirical contributions of this paper, this paper finds 

that both the parametric and nonparametric models are in agreement that core 

inflation is a biased estimator of the trend of total inflation for both PCE and CPI at the 

one-, two-, and four-quarter in-sample forecasts for the fist sample period.  In regards 

to unbiasedness, the only strong agreement between the parametric and 

nonparametric models is found in the first sample period at the twelve-quarter in-

sample forecast of CPI with the exception of two vintages in the local nonparametric 

model.  The findings are more vintage-related in the second sample period than the 

first sample, which could be due to the effects of data-revision that are more readily 

observable in a smaller sample size, but a clear consensus cannot be firmly made at 

this point since new data is incorporated with the revised data.  The effect of structural 

breaks does impact both methodologies, but much more so in the parametric case. 

The structure of this paper is of the following format:  Section 2 presents the 

parametric and nonparametric model.  The empirical results are presented in Section 

3 as well as a brief discussion of the univariate data.  The conclusion is presented in 

Section 4. 

                                                

2 In practice, the average residual squares criterion (ARSC) is used to approximate the IRSC. 
3 It should be noted that averaging and aggregation are not used as synonyms in this paper.  For 

instance, the average estimators refer to the mean estimators, and aggregation refers to the use 

of all the local conditional nonparametric estimators. 
4 In much of the existing literature, such as Rich and Steindel (2005), the F-test is used.   
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2. The Parametric and Nonparametric Models 

Without loss of generality, the discussion of the parametric and nonparametric 

models will be presented in reference to only one dataset, which leaves out the notion 

of vintages with each vintage representing a different real-time dataset that occurs 

with the advent of the release of new data. 

In the presentation of the theoretical parametric and nonparametric models, an 

adaptation of the notation of Härdle and Mammen (1993) is used to present the 

differences between each of the methodologies.  For the given pairs of observations 

( ){ }
1

, ,
T

t t t
X Y

=
the conditional mean of  ( ) ( )t t

m E Y X⋅ = = ⋅  is modelled using the 

following regression function with ( ) 0
t t

E Xε = : 

( )t t tY m X ε= +                (1)

The Newey-West (1987) heteroskedasticity and autocorrelation consistent (HAC) 

covariance matrix is used in both models.  For the parametric model, let 

( ) ( )t p tm X m X=  with the subscript p referring to the parametric regression. 

Specifically with ( )20, ,
t t

ω σ� the OLS regression model is of the following forms: 

( )t p t tY m X ω= +                (2) 

t t tY Xα β ω= + + ,           (3) 

which indicates that for each dataset, only one set of regression parameters is 

produced.  Analogously for the nonparametric regression, let ( ) ( )t np tm X m X= .  The 

subscript np refers to the nonparametric regression.  For any given x and 

for ( )( )20,
t

xυ σ� , the LLLS nonparametric model, which produces T sets of 

regression parameters, is: 

( )t np t tY m X υ= +         (4) 

( ) ( ) .t t tY x x Xα β υ= + +        (5) 

For both models, the possible complication of unit root(s) is avoided due to the 

definition of the variables used.  Thus, for this paper, inflation persistence is analyzed 

in a stationary framework with a possible complication arising from autocorrelation, 

which is discussed in more detail in Sub-Sections 2.1 and 2.2. 

2.1 The Parametric Model 

In regards to studying inflation persistence, the parametric OLS model of 

Equation (3) is of the following form: 
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 ( ) ( )core

t h t t t t
π π α β π π ω+ − = + − +                                                    (6) 

where t hπ +  is the h-period-ahead total inflation at time t, tπ  is total inflation at time t, 

t

coreπ  is core inflation at time t with ( )2~ ,
t t

oω σ  being the random error term with h 

representing the in-sample forecast horizon (Clark 2001, Cogley 2002, Rich and 

Steindel 2005, Lafléche and Armour 2006, etc.).   This makes the regressand, 

( )t t h tY π π+= − , the h-period-ahead change in total inflation at time t, and the 

regressor, ( )core

t t t
X π π= − , is the difference between core inflation and total inflation 

at time t, which is the exclusions-from-core measure of inflation. 

To statistically test for unbiasedness, in regards to core inflation being able to 

predict total inflation, Equation (6) is tested for the joint null hypothesis of 0α = and 

1β =  using the F-test at the 5% significance level.   If the null hypothesis is rejected at 

the 5% significance level, then this seems to indicate that there is persistence 

(biasedness) present in the excluded-from-core series of inflation.  In order to see if 

and how “fast” the short-run effects of inflation dissipates, a range of h-period in-

sample forecast horizons is used, which is discussed in more detail in Section 3.1. 

In order to demonstrate how Equation (6) tests for unbiasedness of core 

inflation, suppose that 0α = and 1β = , then Equation (6) collapses to 

core

t h t tπ π ω+ = + .                  (7) 

In interpreting the slope coefficient with ( ) 0tE ω = , if 1β = , this implies 

( )

( )1 1
t h t

core

t t

π π
β

π π

+∆ −
= =

∆ −
 

( ) ( )core

t h t t t
π π π π+∆ − = ∆ −               (8) 

core

t h tπ π+∆ = ∆ .               (9) 

Thus, Equation (9) states that the change in current core inflation at time t is able to 

capture the change in the h-period ahead in-sample forecast of total inflation. 

Furthermore, suppose 0α = and 1β < , then the following is inferred: 

.core

t h tπ π+∆ < ∆                     (10) 

Equation (10) implies that the exclusions-from-core series of total inflation are 

overstated with the implication being that the change in the h-period ahead in-sample 

forecast of total inflation is below the change in trend inflation (Johnson 1999, 

Lafléche and Armour 2006). 

Alternatively, suppose 0α = and 1β > , then 
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.core

t h tπ π+∆ > ∆                     (11) 

Equation (11) infers that the change in the excluded-from-core series of inflation is 

less than the change of future inflation.  The transitory movements from the 

exclusions-from-core series are then said to be understated (Johnson 1999, Lafléche 

and Armour 2006).  Analogously, the change in the h-period ahead in-sample forecast 

of total inflation is above the change of trend inflation. 

Analogous to Cogley (2002) and Rich and Steindel (2005), the Newey-West 

(1987) HAC covariance matrix is used to form the standard errors and the t-statistics 

for Equation (6) with the lags of the Bartlett kernel reflecting the length of the h-period 

in-sample forecasts.5  Due to the construction of the variables used in the regression 

model, which includes the h-period in-sample forecast horizons, the Newey-West 

(1987) HAC is used to account for autocorrelations caused by the overlapping time 

period of variables and any potential conditional heteroskedasticity (Rich and Steindel 

2005). 6 

In regards to the hypothesis testing of the parametric model, the F-test is used.  

For the critical values the standard F-statistic critical values are used as opposed to the 

Dickey-Fuller F-statistic critical values since all the variables in the model are 

stationary as is further discussed in Section 3.1. 

2.2 The Nonparametric Model 

The discussion and analysis of the exclusions-from-core measures of inflation 

in the nonparametric model are analogous to that of the parametric model, but the 

implementation is very different due to its flexibility.  The flexibility as well as the 

minimax properties of the LLLS nonparametric regression model as given by Equation 

(5) permits a more thorough analysis of inflation persistence by providing T sets of 

regression parameters for a dataset with T number of observations (Wand and Jones 

1995, Atkeson, Moore, and Schaal 1999, and Fan and Gijbels 1996). 

LLLS is a KWLS form of nonparametric methodology, which amounts to fitting 

a line within the window width that is conditional on a given observation, x.  The 

KWLS form of local polynomial fitting is able to provide both local nonparametric 

regression parameters conditional on any given x, such as ( )t xα and ( )t xβ  with the 

subscript t referring to the tth local nonparametric regression, which are analogous to 

the parameters of Equation (5). The set of global nonparametric regression 

                                                

5 Regarding the estimation of the Newey-West HAC variance-covariance matrix, the procedure 

written by Mika Vaihekoski (1998, 2004) is used and is able to be obtained from the following 

web address:  http://www2.lut.fi/~vaihekos/mv_econ.html#e3. 
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parameters are formed by taking the average of all the local conditional nonparametric 

regression parameters of Equation (5), which  are: 

( ) ( )
1

1
T

t

t

x
T

α
=

�   and  ( ) ( )
1

1
T

t

t

x
T

β
=

� .                 (12)                                     

 For this paper, the degree of the local polynomial is one since it is able to 

reduce the bias in the boundary regions without increasing the variance by much since 

a non-linear fit, such as a quadratic fit, increases the variance greatly due to the 

boundary effect (Ruppert and Wand 1994, Pagan and Ullah 1999).  For any given x, the 

univariate Gaussian kernel is used as the smoothing function, which is of the form: 

( )
T

t 1

K K ψ
=

=� ,                               (13) 

where ( )
( )

2

t

1

T2

x x1 1
K exp

2 d
2

ψ

π

� �� �−
� �= − � �� �� �� �

with t

T

x x

d
ψ

� �−
= � �
� �

 and Td referring to the 

window width, which is the smoothing parameter of the model.  The window width, dT, 

is used in the kernel to help determine the “nearness” or “farness” based on the 

conditioning observation, x (Atkeson, Moore, and Schaal 1997). 

The flexibility provided by nonparametrics is due to its window width since it 

is able to provide local regression parameters conditional on any given observation, x .  

This advantageous feature of nonparametrics is also the Achilles’ heel since the choice 

of window width can severely affect the estimation of the local conditional regression 

parameters.7  The most common method of choosing the window width is some form 

of cross-validation with one of the most common forms being the leave-one-out form 

of least squares cross-validation (LSCV), which is intentionally not used for this paper 

due to periods of instability when estimated (Marron 1988, Wand and Jones 1995, Fan 

and Yao 1998, Cai, Fan, and Yao 2000, Fujiwara and Koga 2004).  Yet another reason 

for not using LSCV is that it does not automatically minimize the sum of squared 

errors, which is of importance since the local fit will be used for policy interpretation 

and in particular, for hypothesis testing (Härdle 1994).  For this paper, the IRSC 

method, which is a pre-asymptotic data-driven residual-based window width 

approach of Fan and Gijbels (1995) that minimizes the normalized weighted residual 

                                                                                                                                    

6 In estimation, as the in-sample forecast horizon increases, the level of autocorrelation in the 

residuals also increases, which further necessitates the need for the Newey-West (1987) HAC.  
7 Another potential weakness in nonparametric methodology is the Curse of Dimensionality, 

which is not an issue for this paper since this is a univariate model (Cleveland and Devlin 1988, 

Härdle and Linton 1994).   
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sum of squares, is used to obtain a constant window width for each dataset.8  

Concerning the window width, by choosing a constant window width that minimizes 

the ARSC, the mean squared errors is minimized thereby minimizing the squared bias 

and the variance of the regression parameter (Fan and Gijbels 1995, Marron 1988, 

Härdle and Tsybakov 1997). 

An additional benefit of using nonparametric methodology is that it takes into 

account heteroskedasticity since ( ) ( )2 2 ,E X x xυ σ= = but when it comes to 

hypothesis testing, autocorrelation is not addressed (Robinson 1998).   The presence 

of autocorrelation does not affect the parameters, but it does affect the hypothesis 

tests by producing standard errors that could be underestimated, which would then 

overestimate the test statistic. 

In regards to dealing with autocorrelation, Cai, Kuan, and Sun (2008) propose a 

nonparametric GMM methodology that combines orthogonality conditions and LLLS as 

a method of dealing with autocorrelation as does Creel (2008) except Creel’s (2008) 

work mainly concerns general dynamic latent variable models.  Creel (2008) discusses 

combining kernel smoothing techniques to obtain conditional moments and the 

Newey-West (1987) HAC, which itself involves a nonparametric kernel function, i.e. 

the Bartlett kernel, as is done in this paper in order to remove autocorrelation from 

the local conditional standard errors, which are needed for hypothesis testing.9  

Robinson (1998) method of dealing with autocorrelation is more aptly suited for the 

nearest-neighbour nonparametric approach. 

A more generalized method for dealing with autocorrelation is presented in 

this paper, which to the author’s best knowledge has not been previously presented.  

Since the nonparametric error terms are obtained by minimizing the residual sum of 

squares from Equation (5), these error terms are used to form the T-test for statistical 

significance of the parameters which utilizes the Newey-West (1987) HAC covariance 

matrix (Wasserman 2006).10 

Regarding the joint hypothesis test of unbiasedness of the exclusions-from-

core measures of inflation of the nonparametric regression of Equation (5), the null  

hypothesis of the following form: 

                                                

8 For other papers that use the residual-based window, please see Cai and Chen (2005), Cai 

(2007), Fan and Yao (1998), Chauvet and Tierney (2008), etc. 
9 Creel (2008) does not use the Newey-West (1987) HAC variance-covariance matrix due to 

unreliability in the general dynamic latent variable model.      
10 Sometimes in nonparametric estimation, the average nonparametric regression parameters 

are used in an OLS framework to obtain the error terms, but this is not advisable since these 

error terms were not created by minimizing the residual sum of squares, and therefore, are not 

useful for hypothesis testing purposes. 
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H0:  ( ) 0xα = and ( ) 1xβ =                        (14) 

for each and every ,x with the alternate hypothesis being, H1: Not H0. This translates 

into testing T-number of regression parameters for unbiasedness since there are T-

number of observations in a given dataset. 

Concerning the overall goodness of fit for all the local nonparametric 

regression estimates, Fan, Zhang, and Zhang’s (2001) generalized nonparametric LR-

test in a varying-coefficients model is used since the error terms are stationary and 

since this test takes into account heteroskedasticity.  Specifically, the generalized 

nonparametric LR-test is a hypothesis test that uses the weighted residual sum of 

squares with the same weighting matrix being used for both the null and alternate 

hypotheses in order to keep the comparison as similar as possible, which is important 

since the weighting is based on metric distance.  The benefit of using the afore-

mentioned LR-test, which assumes ( ) 0E v X x= = and ( ) ( )2 2
E v X x xσ= = , is that the 

2χ  critical values may be used. 

As defined by Fan, Zhang, and Zhang (2001), the construction of the 

generalized LR-statistic is of the following construction: 

2

T

d

q T a
r λ χ ′
′ →                                    (15) 

where  2.5600qr′ =  is the normalizing term for the LR-statistic of 
Tλ and 2q = for the 

total number of regression estimates.  Ta′ refers to the degrees of freedom , which is 

( ) ( )
1

22 2
4 1

2

2

2 1 24

2 1 24 14 1
4 sin

2

q
q

T

q q c
a T

q q q
q

q

π

π

−

+

� 	
� � 
 �

� � � �+ � � 
 �′ = ⋅� � � �� � 
 �− + + � �� � � �� �

 �� � � �

� �� 

                              (16) 

with c being some constant term where 
( )1

2
0.7737

q
c

−

=  since the Gaussian kernel is 

used.  The LR-statistic of 
Tλ  looks at the aggregated nonparametric regression model 

and is of the form: 

( ) ( ) 0

1 0

1

log
2

T

RSST
Ln H Ln H

RSS
λ

� �� �
= − =� 	 � �� �� 

� � � �
                               (17) 

where 
0RSS is the residual sum of squares under the null (the restricted model) and 

1RSS  is the residual sum of squares of the alternate (the unrestricted model).  Hence, a 

generalized nonparametric LR test produces only one test statistic for each dataset. 

2.3 Model Evaluation 

In keeping within the framework of the literature in this area such as Cogley 

(2002), Johnson (1999), Lafléche and Armour (2006), and Rich and Steindel (2005), 
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etc., the adjusted R-squared, 2
R , is used as a method for model comparison, which 

demonstrates how well the variation of the dependent variable is explained by the 

model (Hayfield and Racine  2008). 

Given the two different ways to model inflation persistence, the metric distance 

between ( )np tm X from Equation (4) and ( )p tm X from Equation (2) is tested for 

statistical significance using Härdle and Mammen’s (1993) wild bootstrap test.  As 

stated in Li and Racine (2007) under the null hypothesis, the population mean is 

replaced with the sample mean in forming the estimated test statistic, ˆ
HMN where 

( ) ( )
2

1

1ˆ ˆ ˆ
T

HM np t p t

t

N m X m X
T =

� � � 	= −� � � 
� �

�                                (18) 

with the alternate hypothesis being ˆ 0HMN > . 

 

3. Empirical Results 

Since the empirical portion involves five in-sample forecasts for two measures 

of inflation PCE and CPI, which means that two regression models are estimated and 

discussed for three different methodologies, which are the parametric, global 

nonparametric, and local nonparametric methodologies as well as five in-sample 

forecast horizons, Legend 1 to Legend 4 are provided in order to help with the 

interpretation of the tables. 

Concerning the real-time data set, even though the results for 

V_1999:Q4 and V_2000:Q1 are presented for the regressions involving the PCE 

measure of inflation, the results are unreliable due to issues that stem from the 

PCE.  V_1999:Q4 is problematic because much of the dataset had to be 

interpolated since the real-time data of V_1999:Q4 actually begins with 

observation 1994:Q1.   The data in V_2000:Q1 is problematic due to 

inconsistencies in the data collection methodology.11  In comparing V_2000:Q1 

to other vintages, the change in data of V_2000:Q1 is picked up by the 

nonparametric methodology as evidenced by the smaller window width as is 

shown in Tables 6 and 7. 

3.1 Data and Univariate Analysis 

The measures of core PCE, PCE, and CPI are obtained in real-time and are 

available from the Philadelphia Fed.  The seasonally-adjusted core CPI is obtained 
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from the St. Louis Federal Reserve Economic Data (F.R.E.D) since it is not provided in 

real-time.12  The real-time dataset begins with first vintage being V_1996:Q1 and the 

last vintage being V_2008:Q2.  Only 50 vintages are examined since these are the only 

available vintages of core PCE and PCE.  Vintages of CPI go farther back, but in order to 

keep the real-time data analysis as symmetric as possible especially since one of the 

purposes of this paper is to examine whether PCE or CPI is better able to model 

inflation persistence.  For the first sample period, each of the 50 vintages begins with 

1959:Q4 before the calculation of inflation. 

Regarding the first sample period, the calculation of inflation begins with 

1960:Q1 to 2008:Q1 for the very last vintage used in this paper, which is V_2008:Q2.  

This long range of data is deliberately used in order to capture the long run trend in 

the core and total measures of inflation (Rapach 2003, Gagnon 2008).13  Since some 

observations are lost in forming the leading variables, the number of observations in 

each of the regressions varies according to the in-sample forecast horizons of h with 

h being defined as follows: h = {h1, h2, h3, h4, h5} = {1, 2, 4, 8, 12}.  The number of 

observations for each regression is presented in Legend 4. 

For this paper, annualized quarterly measures of inflation are used.  Quarterly 

PCE and quarterly core PCE data are available but only monthly seasonally-adjusted 

real-time data of CPI is available from the Federal Reserve Bank of Philadelphia, which 

is adjusted accordingly to produce annualized quarterly data.14 

Graphs 1A and 1B respectively depict PCE and Core PCE and CPI and Core CPI 

for the last vintage of V_2008:Q1.  To describe generally and briefly the relationship 

between total inflation and core inflation using both PCE and CPI, the relationship 

appears to be as follows: 

(i.) Pre-1982:  Total inflation and core inflation appear to share a similar co- 

 movement, 

(ii.) Post-1982 to 1999:  Core inflation appears to either over- or under-estimate  

total inflation, which shows a great deal of unique local behaviour, and 

(iii.) Post-1999:  The difference between total and core inflation becomes even more 

pronounce and displays some local divergence. 

                                                                                                                                    

11 The interpolation method for V_1999:Q4 was kindly provided by Dean Croushore as was the 

information regarding V_2000:Q1. 
12 For a more complete description of real-time data, please see Croushore and Stark (2001), 

Croushore (2007), and the Federal Reserve Bank of Philadelphia.   
13 As is later shown in Sections 3.2 and 3.3, the inclusion of a long period of time with potential 

structural breaks dampens the effectiveness of the regression model for both the parametric 

and nonparametric models.  
14 For more information regarding the collection of real-time CPI, please visit the Federal 

Reserve Bank of Philadelphia website of: 
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This seems to indicate the possible presence of a structural break especially 

around 1982.  Based upon the findings of the Bai-Quant Test for Structural Change 

(1997), a structural break for core PCE, PCE, core CPI, and CPI are found respectively 

at the following dates:  1983:Q2, 1981:Q2, 1980:Q3, and 1981:Q4.15  For the purposes 

of keeping the analysis as similar as possible, the second sample period for each 

vintage begins in 1983:Q4 before the calculation of inflation with the vintages 

examined in this paper being analogous to the first sample period. 

By the construction of the regressand and the regressor, the regression models 

of Equations (3) and (5) are stationary.  Furthermore, the regressand, regressor, and 

residuals of the regression model are individually tested for stationarity and are found 

to be I(0) by both the Augmented Dickey-Fuller Test and the Phillips-Perron Test.  

These findings are also confirmed by Clark (2001) and Rich and Steindel (2005). 

3.2 Parametric and Global Nonparametric Empirical Results 

As a method of organizing the estimation results for discussion, “A” denotes 

the information regarding the regression involving the PCE measure of inflation, and 

“B” denotes the information regarding the regression involving the CPI. 

3.2.1 First Sample Period:  Beginning from 1960:Q1 

As a means to compare central tendency for all fifty vintages of real-time data 

from V_1996:Q1 to V_2008:Q2, the parametric OLS and the global nonparametric, i.e. 

the average of the local nonparametric estimated regression coefficients are obtained 

respectively from Equations (6) and (12), and are found to produce vastly different 

results.  As Table 1A shows, the estimated slope coefficients of the parametric case is 

smaller than its global nonparametric counterpart for the first three in-sample forecast 

horizons of one, two, and four quarters.16  The estimated parametric slopes involving 

the in-sample forecast horizons of eight- and twelve- quarters is closer to unity and 

larger on average when compared to its global nonparametric counterpart, which is 

shown in Table 1A. 

The global nonparametric vertical intercepts tend to be negative and larger in 

absolute value terms than its parametric counterpart with each increasing in 

magnitude as the in-sample forecast horizon increases.  The differences in the vertical 

intercept are important to point out because as mentioned by Rich and Steindel 

                                                                                                                                    

http://www.philadelphiafed.org/econ/forecast/real-time-data/data-files/CPI/. 
15 Bruce Hansen’s (2001) program for testing for structural changes is used and is able to be 

obtained from the following web address:  

http://www.ssc.wisc.edu/~bhansen/progs/jep_01.html . 
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(2005), the inflexibility of the vertical intercept is one of the problems of the 

parametric model, especially when parameter instability is suspected.  The regression 

estimates for Regression B, which involves the CPI measure of inflation, are similar to 

the results of Regression A.  A summary of the average behaviour of the estimated 

regressions coefficients for both the parametric and global nonparametric cases for all 

in-sample forecast horizons for Regression B are presented in Table 1B. 

The standard deviations, t-statistics, and related p-values for both the 

parametric and global nonparametric case are computed using the Newey-West HAC 

variance-covariance (1987) in order to take into account autocorrelation, which 

increases as the in-sample forecast horizon increases.  In Tables 1A and 1B, the 

standard deviations, t-statistics, and related p-values are provided for the estimated 

global nonparametric coefficients as a means of comparing central tendency against 

the parametric model but are not an exact analogous comparison of methodologies 

due to the formation of residuals. 

In comparing the 2R , a summary of the averages of the 2R across vintages and 

for all five in-sample forecast horizons is provided in Table 3 for Regressions A and B.     

For all methodologies, the latter vintages combined with higher in-sample forecast 

horizons produce an overall higher 2
R , which could possibly be partly due to data 

revision or the increase in sample size.  Rich and Steindel (2005) also find that the 2
R  

increases as the in-sample forecast horizons increase.   The effects of data revisions are 

difficult to trace in an averaged framework because the differences could be due to the 

sample size, which increases with each vintage, even though a recursive framework is 

used especially since each newly incorporated data is given the same importance, i.e. 

weight in the parametric model. 

For the parametric Regression A, the lowest 2
R  of 0.017 is for the regression 

involving the four-quarter in-sample forecast horizon with the highest 2
R of 0.165 

involving the regression for the twelve-quarter in-sample forecast horizon.  In the first 

sample period, when the structural break is not taken into account, the explanatory 

power of the variability of the dependent variable increases by 61% at the minimum 

for Regression A and 86% for Regression B, which occurs in the twelve-quarter in-

sample forecast horizon, and by 1,329% at the maximum for PCE and 1,214% for CPI, 

which occurs in the four-quarter in-sample forecast horizon. 

In regards to the joint hypothesis test for unbiasedness of Equation (6), it is 

determined that unbiasedness occurs when the null hypothesis of 0α = and 1β =  

                                                                                                                                    

16 Due to an attempt at limiting space, all the results are not provided in this paper but are 

available upon request.   
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fails to be rejected at the 5% significance level through the use of the F-test.  So, the 

farther away the p-value gets from 0.05, the more strongly the null is failed to be 

rejected.  For this paper, unbiasedness refer to the exclusions-from-core measures of 

inflation not having an impact on the h-period ahead forecast of inflation, which 

implies that core inflation is able to be capture the overall trend of inflation.   For the 

first three in-sample forecasts of one-, two-, and four- quarters, the null of 

unbiasedness is strongly rejected with a p-value of 0.00 for both the parametric and 

global nonparametric cases for Regressions A and B as is summarized in Tables 5A and 

5B.  The estimated slope coefficients for Regressions A and B, which are less than 

unity, imply that a scenario as described by Equation (10) has occurred meaning that 

the changes in the h-period in-sample forecast of total inflation are below the changes 

in trend inflation. 

For the parametric case, unbiasedness is found in the eight- and twelve-

quarter in-sample forecasts of PCE and CPI, but it should be noted that the average 

2R for Regression A is 11% and 16.5% and for Regression B, is 5.4% and 8.6% for the 

eight- and twelve-quarter in-sample forecast horizons.  Unbiasedness is not found in 

any of the global nonparametric regressions despite them being able to explain more 

of the variation in the regressand for all regressions involving PCE and CPI. 

3.2.2  Second Sample Period:  Beginning from 1984:Q1 

In taking into account a structural break, the parametric and global 

nonparametric models produce different results than that of the first sample period.  

Table 2A presents the average estimated coefficients for the regressions involving PCE 

for all fifty vintages.  Except for the regression involving the first in-sample forecast 

horizon, the estimated slope coefficients are closer to unity that the global 

nonparametric slope coefficients. 

Regarding Regression B, which concerns the CPI, all the estimated vertical 

intercepts for the parametric and global nonparametric models are negative except for 

the global nonparametric regressions involving the two-quarter in-sample forecast 

horizon, which is essentially zero.  As with Regression A, the average estimated slope 

coefficients are closer to unity especially for the latter three in-sample forecast 

horizon.  The twelve-quarter in-sample forecast horizon for both the parametric and 

global nonparametric regressions are extremely close in magnitude.  In the two 

methodologies, all the estimated slope coefficients are statistically significant as is 

shown in Table 2B. 

Once the structural break is taken into account, the 2R of the parametric model 

improves dramatically when compared to the first sample period as is demonstrated 

in Tables 3 and 4.  Despite this, when compared to the parametric model, the global 
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nonparametric model is still able to explain at a minimum 41% more of the variation 

in the h-quarter change in PCE and 26% of the variation in the h-quarter change in CPI  

in the four-quarter in-sample forecast horizon.  The most dramatic increase involves 

the one-quarter in-sample forecast horizon with the global nonparametric model 

being able to explain 95% more of the variation in the regressand for Regression A and 

125% more of the variation in the regressand for Regression B than the parametric 

model. 

Concerning the joint hypothesis test with a null of unbiasedness, the results of 

the F-test in the parametric model are vintage-related as demonstrated by Tables 5A 

and 5B.17  For both Regressions A and B, the null of unbiasedness is rejected for the 

global nonparametric model at the 5% significance level for all in-sample forecast 

horizons.  Contrary to the first sample period, the parametric model, at least for the 

latter vintages, the null of unbiasedness fails to be rejected at the 5% significance level 

for all in-sample forecast horizons except for the one-quarter in-sample forecast 

horizon involving CPI.  Thus, regarding unbiasedness, the parametric model and the 

global nonparametric model do not concur on unbiasedness for any of the in-sample 

forecast horizons in the second sample period. 

3.3 Local Nonparametric Empirical Results 

The window widths for each vintage and for each sample period are calculated 

using Fan and Gijbels’ (1995) IRSC method as described in Sub-Section 2.2 with the 

individual window widths for each vintage presented in Tables 6 and 7. 

For both sample periods, the Härdle and Mammen (1993) wild bootstrap test as 

depicted in Equation (18) produces p-values that are less than 0.05 for all fifty 

vintages in both sample periods.  This means that the parametric and nonparametric 

models are statistically different.  Based on the fact that the local nonparametric model 

produces higher 2
R , which are presented in Tables 3 and 4,  and the results of the 

Härdle and Mammen (1993) wild bootstrap test, the local nonparametric model is 

better able to model inflation persistence than the parametric model. 

3.3.1 First Sample Period:  Beginning from 1960:Q1 

For Regression A for V_2008:Q2, it might seem to be a mistake that conditional 

on 2006:Q4, the estimated vertical intercept for the two-quarter in-sample horizon is 

20.75, and the estimated slope is -5.62, but when examining the fitted values, the local 

                                                

17 Regarding the parametric model for the second sample period, the null of unbiasedness also 

fails to be rejected at the 5% significance level for the following sporadic vintages not 

specifically mentioned in Table 5A:  h1: V_1999:Q4 to V_2000:Q1 and V_2001:Q4 to V_2002:Q1, 

h4: V_1999:Q4, V_2001:Q3 toV_2001:Q4, and V_2002:Q4 to V_2003:Q2, h5: V_1996:Q1, 

V_1997:Q3, V_1999:Q4, V_2003:Q3. 
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nonparametric fitted value is 5.027 and the parametric fitted value is 1.14 with the 

actual value of the two-quarter ahead in-sample forecast of inflation being 5.07.  This 

is just one of many instances where nonparametrics is able to pick up the curvature of 

the data better than the parametric version, which helps to explain why the 

nonparametric model has smaller residuals.  Hence, regarding the interpretation of 

nonparametric models, it is important to not only look at the estimated coefficients but 

more importantly at the fitted values in order to determine if the local nonparametric 

estimates “make sense” and are not an anomaly in the sense of being window width 

driven (Härdle 1994, Wand and Jones 1995). 

Graphs 2A and 2B and Graphs 3A and 3B illustrate the estimated fitted values 

of the parametric and local nonparametric values along with the actual values of the 

four-quarter change and the twelve-quarter change in total PCE and total CPI, 

respectively.  With the inclusion of the structural break, the local nonparametric model 

is better able to capture the actual in-sample forecasts of total inflation despite there 

being a great deal of local curvature with the exception of the oils shock of the mid 

1970’s and the turmoil of the early 1980’s, thus explaining the much higher 2R for both 

Regressions A and B. 

Table 8A displays the results of the Fan, Zhang, and Zhang’s (2001) generalized 

nonparametric LR-test for Regression A, with the null of conditional unbiasedness 

being rejected for the regressions involving all in-sample forecast horizons except for 

V_1999:Q4, which is problematic since much of the dataset needed to be interpolated.  

A summary of the joint hypothesis tests of the aggregated local nonparametric 

estimates for both Regressions A and B can be found in Tables 5A and 5B.  Regarding 

Regression B, as shown in Table 8B; Fan, Zhang, and Zhang’s (2001) generalized 

nonparametric LR-test also rejects the null of unbiasedness for all in-sample forecast 

horizons except for the twelve-quarter in-sample forecast horizon with the exceptions 

of vintages, V_2005:Q1 to V_2006:Q1.  Hence, according to Fan, Zhang, and Zhang’s 

(2001) generalized nonparametric LR-test, only for CPI and only at the twelve-quarter 

mark does core CPI capture the general trend of total CPI in the first sample period. 

Hence, in regards to the empirical estimation of Regressions A and B, this paper finds 

that both the parametric and nonparametric models agree upon unbiasedness in 

regards to the twelve-quarter in-sample forecast of CPI only.  Although 

nonparametrics is able to provided conditional local estimates, the effects of data 

revision are much more difficult to pinpoint with any degree of certainty because of 

the continual updating of the real-time dataset with new information.  In order to 

isolate the effect of data revisions, one must keep the number of observations the same 

while varying only the vintages; this is left for future research. 
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3.3.2 Second Sample Period:  Beginning from 1984:Q1 

Graphs 4A and 4B and Graphs 5A and 5B  demonstrates the estimated fitted 

values of  both the parametric and local nonparametric values along with the actual 

values of the one-quarter change and the four-quarter change in total PCE and total 

CPI, respectively.  With the removal of the structural break, the parametric model 

performs better, but the nonparametric model still out performs the parametric 

model.  The regressions involving the one-quarter in-sample forecast horizon, as is 

found in Graphs 4A and 4B, are illustrated since the difference in terms of explanatory 

power between the parametric and nonparametric models, as described by the 2R is 

the highest.  Similarly, the regressions involving the four-quarter in-sample forecast 

horizon are depicted since they involve the lowest in terms of the difference of the 2
R  

between the parametric and local nonparametric models. 

In regards to Fan, Zhang, and Zhang’s (2001) generalized nonparametric LR-

test for the aggregate nonparametric model, for Regression B, which involves CPI, for 

the same in-sample forecast horizon such as the eight-quarter in-sample forecast 

horizon, the results of the joint hypothesis test for unbiasedness are mixed, which is 

analogous to the finding of the parametric model with a summary of the results being 

provided in Tables 5A and 5B.   Concerning Regression A, the earlier vintages of the 

four-quarter in-sample forecast horizon find unbiasedness while the vintages after and 

not including V_2002:Q4 find that the aggregated nonparametric model to be biased. 

 

4. Conclusion 

The contributions of this paper are the strongest on the two main fronts of 

methodology and empirical results and the third front of real-time data analysis being 

inconclusive.  Concerning the methodology, the contributions of this paper is as 

follows: 

1. The innovation of a nonparametric GMM method is used to account for 

autocorrelation at the local nonparametric level through the use of the Newey-

West HAC estimator, which to the author’s best knowledge has not been 

previously presented. 

2. Global nonparametric estimators, which are the average of the local 

nonparametric estimates, are presented as a measure of central tendency but 

hypothesis tests based on using these measures are inadequate since the 

residuals that are not formed by minimizing the residual sum of squares.     

Instead of comparing the parametric benchmark with the average local 

nonparametric estimators, a better comparison in regards to hypothesis 
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testing and overall model fit would be to use the aggregate local nonparametric 

model as is done in this paper.   

 

Regarding the empirical results of capturing inflation persistence, the results 

are as follows: 

1. Core inflation, which is total inflation minus the volatile components of food 

and energy, does not appear to consistently capture the overall trend of total 

inflation regardless of whether PCE or CPI is used.  Of the two measures, CPI 

performs better than PCE in regards to modelling inflation persistence. 

2. The findings of unbiasedness especially in the second sample period can 

possibly be vintage-related, which could be due to the incorporation of new 

data or data-revisions.  This is an argument in favour of using real-time data, 

but this warrants further investigation. 

3. In the presence of a large structural break such as the one that occurs in the 

early 1980’s for PCE, core PCE, CPI, and core CPI, the ability of the parametric 

model to explain the variability of the h-period ahead change in total inflation 

is dramatically decreased when compared to the sub-sample period with the 

removal of the structural break. 

4. The local nonparametric model fares better in the presence of a large 

structural break, but still, once the structural break is taken into account, the 

explanatory power of the local nonparametric model as captured by the 2R also 

increases drastically, but not as drastically as the parametric model. 

5. The parametric model is more likely to be unbiased meaning that core inflation 

is able to predict the h-period ahead changes in total inflation for both PCE and 

CPI but is also vintage-related and sample-related in spite of being able to 

explain less of the variation in the regressand which makes one question the 

findings of unbiasedness in the parametric model. 

 

The contribution of this paper is regards to the exact effect of data-revision on 

measuring the persistence of inflation is uncertain.  The use of a recursive 

methodology in a parametric and non-parametric framework is not enough to isolate 

the effects of data-revision.  In the presence of data revision, even when new data is 

incorporated by using a dynamic gain parameter, it is not clear whether the change 

produced in the local conditional regression is from the incorporation of new data or 

due to data revision.  Hence, this paper finds that it is important to isolate the effect of 

data revisions by keeping the dataset constant and varying only the vintages, which is 

left for future research. 
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Graph 1A:  PCE and Core PCE--Vintage 2008:Q2 (1960:Q4 to 2008:Q1)

-4

0

4

8

12

16

60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08

CPI Inflation Core CPI Inflation

Graph 1B:  CPI and Core CPI--Vintage 2008:Q2 (1960:Q1 to 2008:Q1)
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Graph 2A:  Fitted Values using PCE--Vintage 2008:Q2
(Four-Quarter In-sample Forecast Horizon-1960:Q1 to 2007:Q1)
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(Four-Quarter In-sample Forecast Horizon-1960:Q1 to 2007:Q1)

-10.0

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04

Parametric Fitted Values Nonparametric Fitted Values [PCE(t+12)-PCE(t)]

Graph 3A:  Fitted Values using PCE--Vintage 2008:Q2
(Twelve-Quarter In-sample Forecast Horizon-1960:Q1 to 2005:Q1)

-16

-12

-8

-4

0

4

8

12

60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04

Parametric Fitted Values Nonparametric Fitted Values [CPI(t+12)-CPI(t)]

Graph 3B:  Fitted Values using CPI--Vintage 2008:Q2
(Twelve-Quarter In-sample Forecast Horizon-1960:Q1 to 2005:Q1)
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Legends and Tables 

Legend 1 

Regression Model--Equation (6) 

Regression Dependent  Variable Independent Variable 

REG A ( )t h t+PCE -PCE  ( )core

t tPCE -PCE  

REG B ( )t h t+CPI -CPI  ( )core

t tCPI -CPI  

 

Legend 2 

Regression Model A Regression Model B Forecast Horizon: h 

REG A:h1 REG B:h1 1 quarter 

REG A:h2 REG B:h2 2 quarters 

REG A:h3 REG B:h3 4 quarters 

REG A:h4 REG B:h4 8 quarters 

REG A:h5 REG B:h5 12 quarters 

 

Legend 3 

Est. Regression Coefficients 
Parametric 

(REG A) 

Parametric 

(REG B) 

Global Nonparametric 

(REG A) 

Global Nonparametric 

(REG B) 

Vertical Intercept aAP aBP aAG aBG 

Slope Coefficient bAP bBP bAG bBG 

 

Legend 4 

 Data Samples  

Forecast Horizon:  h 1960:Q1-2008:Q1 1984:Q1-2008:Q1 Ending Data Period 

h1 192 96 2007:Q4 

h2 191 95 2007:Q3 

h3 189 93 2007:Q1 

h4 185 89 2006:Q1 

h5 181 85 2005:Q1 
 

Table 1A:  REG A -Average Regression Results (Starting in1960:Q1) 

 PARAMETRIC REGRESSION GLOBAL NONPARAMETRIC REGRESSION 

hm aAP S.D. T-Stat PV bAP S.D. T-Stat PV aAG S.D. T-Stat PV bAG S.D. T-Stat PV 

h1 = 1Q 0.025 0.08 0.31 0.76 0.220 0.14 1.59 0.12 -0.047 0.07 -0.57 0.33 0.360 0.07 4.94 0.00 

h2 = 2Q 0.025 0.12 0.21 0.83 0.237 0.19 1.28 0.23 -0.248 0.11 -2.28 0.14 0.418 0.09 4.60 0.00 

h3 = 4Q 0.029 0.22 0.13 0.89 0.272 0.25 1.09 0.28 -0.039 0.19 -0.23 0.61 0.395 0.15 2.50 0.02 

h4 = 8Q 0.101 0.39 0.26 0.79 0.814 0.21 3.87 0.00 0.488 0.35 1.38 0.21 0.465 0.17 2.70 0.07 

h5 = 12Q 0.134 0.51 0.27 0.79 1.067 0.25 4.28 0.00 0.517 0.45 1.15 0.30 0.660 0.17 4.01 0.00 

 

Table  1B: REG B-Average Regression Results (Starting in 1960:Q1) 

 PARAMETRIC REGRESSION GLOBAL NONPARAMETRIC REGRESSION 

hm aBP S.D. T-Stat PV bBP S.D. T-Stat PV aAG S.D. T-Stat PV bAG S.D. T-Stat PV 

h1 = 1Q 0.009 0.12 0.07 0.92 0.264 0.13 2.11 0.05 -0.171 0.11 -1.55 0.22 0.456 0.09 5.10 0.00 

h2 = 2Q 0.012 0.17 0.07 0.93 0.200 0.19 1.08 0.31 -0.375 0.16 -2.44 0.05 0.448 0.11 3.94 0.00 

h3 = 4Q 0.022 0.31 0.07 0.94 0.257 0.26 1.01 0.33 -0.054 0.27 -0.20 0.78 0.215 0.13 1.67 0.31 

h4 = 8Q 0.053 0.54 0.10 0.92 0.621 0.17 3.58 0.00 0.345 0.50 0.70 0.50 0.478 0.16 3.06 0.06 

h5 = 12Q 0.072 0.66 0.11 0.91 0.834 0.18 4.59 0.00 0.101 0.63 0.15 0.81 0.894 0.16 5.59 0.00 
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Table 2A:  REG A -Average Regression Results (Starting in 1984:Q1) 

 PARAMETRIC REGRESSION GLOBAL NONPARAMETRIC REGRESSION 

hm a1AP S.D. T-Stat PV b1AP S.D. T-Stat PV a1AG S.D. T-Stat PV b1AG S.D. T-Stat PV 

h1 = 1Q -0.123 0.10 -1.13 0.35 0.672 0.13 5.07 0.00 -0.105 0.09 -1.60 0.19 0.734 0.09 9.76 0.00 

h2 = 2Q -0.174 0.14 -1.16 0.32 0.828 0.13 6.31 0.00 -1.601 0.12 -18.80 0.07 -0.145 0.13 -8.28 0.00 

h3 = 4Q -0.242 0.18 -1.30 0.28 0.931 0.14 6.55 0.00 -1.854 0.17 -18.28 0.24 -0.397 0.10 -12.88 0.09 

h4 = 8Q -0.385 0.24 -1.61 0.21 1.024 0.19 5.40 0.00 1.308 0.21 11.05 0.42 1.392 0.11 17.97 0.16 

h5 = 12Q -0.446 0.34 -1.29 0.27 1.052 0.19 5.67 0.00 -0.023 0.28 0.50 0.19 0.702 0.09 8.76 0.00 

 

Table 2B:  REG B-Average Regression Results (Starting in 1984:Q1) 

 PARAMETRIC REGRESSION GLOBAL NONPARAMETRIC REGRESSION 

hm a1BP S.D. T-Stat PV b1BP S.D. T-Stat PV a1BG S.D. T-Stat PV b1BG S.D. T-Stat PV 

h1 = 1Q -0.217 0.14 -1.53 0.21 0.654 0.14 4.72 0.00 -0.155 0.12 -1.29 0.30 0.912 0.07 12.49 0.00 

h2 = 2Q -0.293 0.20 -1.41 0.22 0.844 0.12 6.94 0.00 0.004 0.18 -0.16 0.05 1.209 0.08 15.19 0.00 

h3 = 4Q -0.388 0.26 -1.48 0.21 1.003 0.15 6.56 0.00 -0.147 0.23 -0.69 0.45 0.712 0.09 7.57 0.00 

h4 = 8Q -0.494 0.33 -1.49 0.19 1.039 0.15 7.22 0.00 -0.188 0.30 -0.68 0.56 0.757 0.10 7.66 0.00 

h5 = 12Q -0.484 0.35 -1.38 0.22 1.114 0.15 7.46 0.00 -0.661 0.33 -2.17 0.17 1.151 0.13 10.28 0.00 

 

Table 3:  Average of Adjusted R-Squared Term (Starting in 1960:Q1) 

 REG A REG B 

hm Parametrics 
Global/Local 

Nonparametrics 

 

% 

Change 
Parametrics 

Global/Local 

Nonparametrics 

 

% 

Change 

h1 = 1Q 0.029 0.254 776% 0.038 0.190 400% 

h2 = 2Q 0.023 0.229 896% 0.012 0.155 1,192% 

h3 = 4Q 0.017 0.243 1,329% 0.014 0.184 1,214% 

h4 = 8Q 0.110 0.221 101% 0.054 0.143 165% 

h5 = 12Q 0.165 0.266 61% 0.086 0.160 86% 

 

 

Table 4:  Average of Adjusted R-Squared Term (Starting in 1984:Q1) 

 REG A REG B 

hm Parametrics 
Global/Local 

Nonparametrics 

 

% 

Change 
Parametrics 

Global/Local 

Nonparametrics 

 

% 

Change 

h1 = 1Q 0.230 0.448 95% 0.253 0.568 125% 

h2 = 2Q 0.268 0.394 47% 0.321 0.416 30% 

h3 = 4Q 0.282 0.397 41% 0.368 0.464 26% 

h4 = 8Q 0.300 0.433 44% 0.346 0.450 30% 

h5 = 12Q 0.289 0.463 60% 0.427 0.574 34% 
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 Table 5A: REG A-Summary of Tests for Unbiasedness 

 Parametrics Global Nonparametrics Local Nonparametrics 
hm 1960:Q1 1984:Q1 1960:Q1 1984:Q1 1960:Q1 1984:Q1 

1Q 

Biased 

(βave = 

0.220) 

Unbiased: 

After 
V_2007:Q1 

(βave = 0.672) 

Biased 

(βave = 

0.360) 

Biased 

(βave =0.734) 

Biased 

 

Biased 

 

2Q 

Biased 

(βave = 

0.237) 

Unbiased: 

All Vintages 

(βave = 0.828) 

Biased 

(βave =0.418) 

Biased 

(βave=-0.145) 

Biased 

 

Biaseda 

(some 

exceptions) 

4Q 
Biased 

(βave = 0.272) 

Unbiased: 

All Vintages 

(βave = 0.931) 

Biased 

(βave  

=0.395) 

Biased 

(βave =-

0.397) 

Biased 

 

Biased 

V_2000:Q1 

& after 

V_2002:Q4 

8Q 
Unbiased 

(βave = 0.814) 

Unbiased: 
After 

V_2003:Q3 

(βave =1.024) 

Biased 

(βave =0.465) 

Biased 

(βave =1.392) 

Biased 

except 

V_1999:Q4 

Biased 

except 

V_1999:Q4 

12Q 
Unbiased 

(βave=1.067) 

Unbiased: 

After 

V_2003:Q4 

(βave =1.052) 

Biased 

(βave  

=0.660) 

Biased 

(βave =0.702) 

Biased 

not valid 

in 

V_1999:Q4 

Biased 

 

 

 Table 5B: REG B-Summary of Tests for Unbiasedness 

 Parametrics Global Nonparametrics Local  Nonparametrics 
hm 1960:Q1 1984:Q1 1960:Q1 1984:Q1 1960:Q1 1984:Q1 

1Q 
Biased 

(βave 0.264) 

Biased 

(βave =0.654) 

Biased 

(βave=0.456) 

Biased 

(βave=0.912) 

Biased 

 

Biased 

except 

V_2007:Q1 

to V_2007:Q2 

2Q 
Biased 

(βave 0.200) 

Unbiasedb: 

After 

V_2000:Q2 

(βave =0.844) 

Biased 

(βave=0.448) 

Biased 

(βave=1.209) 

Biased 

 

Biased 

 

4Q 
Biased 

(βave 0.257) 

Unbiasedb: 

After 

V_2000:Q2 

(βave =1.003) 

Biased 

(βave=0.215) 

Biased 

(βave=0.712) 

Biased 

 

Biased 

 

8Q 

Unbiased 

All Vintages 

(βave=0.621) 

Unbiasedb: 

After 

V_2000:Q2 

(βave =1.039) 

Biased 

(βave=0.478) 

Biased 

(βave=0.757) 

Biased 

 

Unbiased for 

V_2001:Q1, 

V_2001:Q3 to 

V_2001:Q4, & after 

V_2006:Q2 

 

12Q 

Unbiased 

All Vintages 

(βave 0.834) 

Unbiasedb: 

After 

V_2000:Q1 

(βave =1.114) 

Biased 

(βave=0.894) 

Biased 

(βave=1.151) 

Unbiased 

except 

V_2005:Q3 

to 

V_2006:Q1 

 

Biased 

 

                                                

a In the local nonparametric model, there is sporadic unbiasedness during the following vintages for 

the following in-sample forecast horizon:  h2: V_1996:Q1 to V_1997:Q1, V_1999:Q4, and 

V_2000:Q2 to V_2002:Q2.    
b Regarding the parametric model for the second sample period, the null of unbiasedness is rejected 

for the following vintages at the 5% significance level:  h2: V_1998:Q2 to V_2000:Q1 and 

V_2002:Q2, h3: V_1997:Q4 to V_2000:Q1, h4: V_1997:Q3 to V_2000:Q2, V_2002:Q2, and 

V_2003:Q3 to V_2004:Q2 h5: V_1997:Q3 to V_2000:Q2, V_2002:Q2 to V_2002:Q3, and 

V_2004:Q1. 
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 Table 6:  ARSC Nonparametric Window Widths (Starting in1960:Q1) 

Vintage REG A: h1 REG B: h1 REG A: h2 REG B: h2 REG A: h3 REG B: h3 REG A: h4 REG B: h4 REG A: h5 REG B: h5 

1996:Q1 0.27 0.29 0.27 0.29 0.27 0.29 0.27 0.29 0.27 0.29 

1996:Q2 0.27 0.29 0.27 0.29 0.27 0.29 0.27 0.29 0.27 0.29 

1996:Q3 0.27 0.29 0.27 0.29 0.27 0.29 0.27 0.29 0.27 0.29 

1996:Q4 0.27 0.29 0.27 0.29 0.27 0.29 0.27 0.29 0.27 0.29 

1997:Q1 0.27 0.29 0.27 0.29 0.27 0.29 0.27 0.29 0.27 0.29 

1997:Q2 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 

1997:Q3 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 

1997:Q4 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 

1998:Q1 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 

1998:Q2 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 

1998:Q3 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 

1998:Q4 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 

1999:Q1 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 

1999:Q2 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 

1999:Q3 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 

1999:Q4 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 

2000:Q1 0.06 0.29 0.06 0.29 0.06 0.29 0.06 0.29 0.06 0.29 

2000:Q2 0.22 0.29 0.22 0.29 0.22 0.29 0.22 0.29 0.22 0.29 

2000:Q3 0.22 0.29 0.22 0.29 0.22 0.29 0.22 0.29 0.22 0.29 

2000:Q4 0.22 0.29 0.22 0.29 0.22 0.29 0.22 0.29 0.22 0.29 

2001:Q1 0.22 0.29 0.22 0.29 0.22 0.29 0.22 0.29 0.22 0.29 

2001:Q2 0.22 0.29 0.22 0.29 0.22 0.29 0.22 0.29 0.22 0.29 

2001:Q3 0.22 0.29 0.22 0.29 0.22 0.29 0.22 0.29 0.22 0.29 

2001:Q4 0.22 0.29 0.22 0.29 0.22 0.29 0.22 0.29 0.22 0.29 

2002:Q1 0.22 0.29 0.22 0.29 0.22 0.29 0.22 0.29 0.22 0.29 

2002:Q2 0.22 0.28 0.22 0.29 0.22 0.29 0.22 0.29 0.22 0.29 

2002:Q3 0.22 0.28 0.22 0.28 0.22 0.29 0.22 0.29 0.22 0.29 

2002:Q4 0.22 0.28 0.22 0.28 0.22 0.29 0.22 0.29 0.22 0.29 

2003:Q1 0.22 0.28 0.22 0.28 0.22 0.28 0.22 0.29 0.22 0.29 

2003:Q2 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.29 0.22 0.29 

2003:Q3 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.29 0.22 0.29 

2003:Q4 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.29 0.22 0.29 

2004:Q1 0.20 0.25 0.20 0.25 0.20 0.25 0.20 0.25 0.20 0.29 

2004:Q2 0.20 0.26 0.20 0.26 0.20 0.26 0.20 0.26 0.20 0.29 

2004:Q3 0.20 0.26 0.20 0.26 0.20 0.26 0.20 0.26 0.20 0.29 

2004:Q4 0.20 0.26 0.20 0.26 0.20 0.26 0.20 0.26 0.20 0.29 

2005:Q1 0.20 0.26 0.20 0.26 0.20 0.26 0.20 0.26 0.20 0.26 

2005:Q2 0.20 0.26 0.20 0.26 0.20 0.26 0.20 0.26 0.20 0.26 

2005:Q3 0.20 0.26 0.20 0.26 0.20 0.26 0.20 0.26 0.20 0.26 

2005:Q4 0.20 0.26 0.20 0.26 0.20 0.26 0.20 0.26 0.20 0.26 

2006:Q1 0.20 0.26 0.20 0.26 0.20 0.26 0.20 0.26 0.20 0.26 

2006:Q2 0.20 0.28 0.20 0.28 0.20 0.28 0.20 0.28 0.20 0.28 

2006:Q3 0.20 0.28 0.20 0.28 0.20 0.28 0.20 0.28 0.20 0.28 

2006:Q4 0.20 0.28 0.20 0.28 0.20 0.28 0.20 0.28 0.20 0.28 

2007:Q1 0.20 0.28 0.20 0.28 0.20 0.28 0.20 0.28 0.20 0.28 

2007:Q2 0.20 0.18 0.20 0.28 0.20 0.28 0.20 0.28 0.20 0.28 

2007:Q3 0.20 0.18 0.20 0.18 0.20 0.28 0.20 0.28 0.20 0.28 

2007:Q4 0.20 0.18 0.20 0.18 0.20 0.28 0.20 0.28 0.20 0.28 

2008:Q1 0.20 0.24 0.20 0.24 0.20 0.24 0.20 0.28 0.20 0.28 

2008:Q2 0.20 0.24 0.20 0.24 0.20 0.24 0.20 0.28 0.20 0.28 
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 Table 7:  ARSC Nonparametric Window Widths (Starting in 1984:Q1) 

Vintage REG A: h1 REG B: h1 REG A: h2 REG B: h2 REG A: h3 REG B: h3 REG A: h4 REG B: h4 REG A: h5 REG B: h5 

1996:Q1 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.46 

1996:Q2 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.46 

1996:Q3 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.46 

1996:Q4 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.46 

1997:Q1 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.46 

1997:Q2 0.20 0.30 0.20 0.30 0.20 0.30 0.20 0.30 0.21 0.46 

1997:Q3 0.21 0.30 0.05 0.30 0.21 0.30 0.21 0.30 0.21 0.46 

1997:Q4 0.21 0.30 0.05 0.30 0.21 0.30 0.21 0.30 0.21 0.46 

1998:Q1 0.21 0.30 0.05 0.30 0.21 0.30 0.21 0.30 0.21 0.46 

1998:Q2 0.21 0.30 0.05 0.30 0.21 0.30 0.21 0.30 0.21 0.46 

1998:Q3 0.20 0.30 0.20 0.30 0.20 0.30 0.20 0.30 0.21 0.46 

1998:Q4 0.21 0.30 0.05 0.30 0.21 0.30 0.21 0.30 0.21 0.46 

1999:Q1 0.21 0.30 0.05 0.30 0.21 0.30 0.21 0.30 0.21 0.46 

1999:Q2 0.21 0.30 0.05 0.30 0.21 0.30 0.21 0.30 0.21 0.46 

1999:Q3 0.21 0.30 0.05 0.30 0.21 0.30 0.21 0.30 0.21 0.30 

1999:Q4 0.23 0.30 0.23 0.30 0.23 0.30 0.23 0.30 0.24 0.30 

2000:Q1 0.04 0.30 0.04 0.30 0.04 0.30 0.04 0.30 0.04 0.30 

2000:Q2 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 

2000:Q3 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 

2000:Q4 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 

2001:Q1 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 

2001:Q2 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 

2001:Q3 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 

2001:Q4 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 

2002:Q1 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 0.22 0.30 

2002:Q2 0.16 0.29 0.22 0.31 0.22 0.31 0.22 0.31 0.22 0.31 

2002:Q3 0.16 0.29 0.16 0.29 0.22 0.31 0.22 0.31 0.22 0.31 

2002:Q4 0.16 0.29 0.16 0.29 0.22 0.31 0.22 0.31 0.22 0.31 

2003:Q1 0.16 0.29 0.16 0.29 0.16 0.29 0.22 0.31 0.22 0.31 

2003:Q2 0.16 0.25 0.16 0.25 0.16 0.25 0.22 0.31 0.22 0.31 

2003:Q3 0.16 0.25 0.16 0.25 0.16 0.25 0.22 0.31 0.22 0.31 

2003:Q4 0.16 0.25 0.16 0.25 0.16 0.25 0.22 0.31 0.22 0.31 

2004:Q1 0.14 0.25 0.14 0.25 0.14 0.25 0.14 0.25 0.20 0.31 

2004:Q2 0.14 0.26 0.14 0.26 0.14 0.26 0.14 0.26 0.20 0.31 

2004:Q3 0.15 0.26 0.15 0.26 0.15 0.26 0.15 0.26 0.20 0.31 

2004:Q4 0.15 0.26 0.15 0.26 0.15 0.26 0.15 0.26 0.20 0.31 

2005:Q1 0.15 0.26 0.15 0.26 0.15 0.26 0.15 0.26 0.15 0.26 

2005:Q2 0.15 0.26 0.15 0.26 0.15 0.26 0.15 0.26 0.15 0.26 

2005:Q3 0.15 0.26 0.15 0.26 0.15 0.26 0.15 0.26 0.15 0.26 

2005:Q4 0.15 0.26 0.15 0.26 0.15 0.26 0.15 0.26 0.15 0.26 

2006:Q1 0.15 0.26 0.15 0.26 0.15 0.26 0.15 0.26 0.15 0.26 

2006:Q2 0.15 0.28 0.15 0.28 0.15 0.28 0.15 0.28 0.15 0.29 

2006:Q3 0.15 0.28 0.15 0.28 0.15 0.28 0.15 0.28 0.15 0.29 

2006:Q4 0.15 0.28 0.15 0.28 0.15 0.28 0.15 0.28 0.15 0.29 

2007:Q1 0.15 0.28 0.15 0.28 0.15 0.28 0.15 0.28 0.15 0.29 

2007:Q2 0.07 0.20 0.15 0.28 0.15 0.28 0.15 0.28 0.15 0.29 

2007:Q3 0.06 0.20 0.06 0.20 0.15 0.28 0.15 0.28 0.15 0.29 

2007:Q4 0.06 0.19 0.06 0.20 0.15 0.28 0.15 0.28 0.15 0.29 

2008:Q1 0.06 0.24 0.06 0.24 0.06 0.24 0.15 0.28 0.15 0.29 

2008:Q2 0.06 0.24 0.06 0.24 0.06 0.24 0.15 0.28 0.15 0.29 



 - 34 -

 

Table 8A:  Fan, Zhang, and Zhang's (2001)  LR-Statistic and P-Values (Starting in 1960:Q1) 

 REG A: h1 REG A: h2 REG A: h3 REG A: h4 REG A: h5 

Vintage LR-Stat P-Value LR-Stat P-Value LR-Stat P-Value LR-Stat P-Value LR-Stat P-Value 

1996:Q1 144.12 0.00 95.88 0.00 73.66 0.00 29.60 0.00 21.15 0.02 

1996:Q2 143.68 0.00 96.32 0.00 74.11 0.00 30.02 0.00 20.92 0.02 

1996:Q3 143.08 0.00 96.52 0.00 74.14 0.00 30.11 0.00 20.91 0.02 

1996:Q4 141.63 0.00 96.89 0.00 74.65 0.00 29.28 0.00 20.99 0.02 

1997:Q1 141.67 0.00 97.54 0.00 75.00 0.00 29.58 0.00 21.11 0.02 

1997:Q2 127.00 0.00 103.78 0.00 100.67 0.00 34.53 0.00 23.75 0.01 

1997:Q3 129.45 0.00 103.05 0.00 98.38 0.00 35.04 0.00 23.45 0.01 

1997:Q4 130.38 0.00 103.90 0.00 98.90 0.00 35.00 0.00 22.78 0.01 

1998:Q1 131.18 0.00 104.65 0.00 98.80 0.00 34.97 0.00 22.25 0.01 

1998:Q2 132.08 0.00 105.34 0.00 99.08 0.00 34.01 0.00 21.81 0.02 

1998:Q3 131.40 0.00 104.17 0.00 100.56 0.00 32.73 0.00 21.15 0.02 

1998:Q4 132.52 0.00 104.38 0.00 101.26 0.00 32.65 0.00 20.90 0.02 

1999:Q1 133.24 0.00 104.95 0.00 101.75 0.00 32.45 0.00 20.77 0.02 

1999:Q2 134.09 0.00 105.58 0.00 101.45 0.00 32.11 0.00 20.68 0.02 

1999:Q3 133.34 0.00 105.53 0.00 101.52 0.00 31.45 0.00 21.04 0.02 

1999:Q4 24.19 0.01 22.89 0.01 12.72 0.25 4.50 0.93 -0.80 -1.00 

2000:Q1 181.31 0.00 139.35 0.00 138.56 0.00 47.95 0.00 54.73 0.00 

2000:Q2 130.14 0.00 100.60 0.00 80.32 0.00 24.40 0.01 22.92 0.01 

2000:Q3 129.92 0.00 101.06 0.00 81.60 0.00 24.39 0.01 23.83 0.01 

2000:Q4 130.28 0.00 101.55 0.00 82.21 0.00 24.52 0.01 24.25 0.01 

2001:Q1 131.18 0.00 102.09 0.00 82.67 0.00 24.58 0.01 24.41 0.01 

2001:Q2 131.10 0.00 102.70 0.00 82.55 0.00 24.90 0.01 23.57 0.01 

2001:Q3 129.51 0.00 103.66 0.00 84.15 0.00 25.52 0.00 24.59 0.01 

2001:Q4 127.89 0.00 100.75 0.00 83.30 0.00 25.24 0.01 24.14 0.01 

2002:Q1 128.37 0.00 101.82 0.00 83.81 0.00 25.48 0.01 23.85 0.01 

2002:Q2 129.00 0.00 102.30 0.00 83.67 0.00 24.81 0.01 23.53 0.01 

2002:Q3 131.83 0.00 103.78 0.00 84.69 0.00 25.66 0.00 23.98 0.01 

2002:Q4 131.76 0.00 104.01 0.00 83.48 0.00 26.28 0.00 24.33 0.01 

2003:Q1 132.18 0.00 104.67 0.00 84.22 0.00 26.23 0.00 24.55 0.01 

2003:Q2 132.38 0.00 104.65 0.00 84.42 0.00 26.27 0.00 24.83 0.01 

2003:Q3 131.92 0.00 105.23 0.00 84.63 0.00 26.42 0.00 24.89 0.01 

2003:Q4 131.13 0.00 105.33 0.00 85.01 0.00 25.49 0.01 25.41 0.01 

2004:Q1 133.28 0.00 103.77 0.00 82.67 0.00 22.75 0.01 25.35 0.01 

2004:Q2 132.66 0.00 104.95 0.00 83.63 0.00 22.81 0.01 25.68 0.00 

2004:Q3 134.44 0.00 103.61 0.00 81.52 0.00 23.61 0.01 26.07 0.00 

2004:Q4 133.57 0.00 103.22 0.00 82.15 0.00 23.35 0.01 26.02 0.00 

2005:Q1 133.89 0.00 103.71 0.00 82.55 0.00 23.76 0.01 25.42 0.01 

2005:Q2 134.34 0.00 103.56 0.00 82.78 0.00 22.56 0.02 25.30 0.01 

2005:Q3 131.17 0.00 102.55 0.00 84.15 0.00 23.38 0.01 25.85 0.00 

2005:Q4 131.40 0.00 102.49 0.00 83.92 0.00 23.93 0.01 26.24 0.00 

2006:Q1 130.85 0.00 102.43 0.00 84.60 0.00 24.14 0.01 26.64 0.00 

2006:Q2 132.22 0.00 98.81 0.00 85.05 0.00 24.00 0.01 25.82 0.00 

2006:Q3 132.17 0.00 97.87 0.00 84.79 0.00 23.71 0.01 25.56 0.01 

2006:Q4 131.65 0.00 98.30 0.00 78.84 0.00 24.02 0.01 25.76 0.01 

2007:Q1 128.27 0.00 95.25 0.00 77.50 0.00 22.85 0.01 25.20 0.01 

2007:Q2 129.96 0.00 94.85 0.00 77.58 0.00 22.91 0.01 25.35 0.01 

2007:Q3 130.85 0.00 96.91 0.00 78.47 0.00 22.20 0.02 26.02 0.00 

2007:Q4 131.96 0.00 96.14 0.00 78.75 0.00 21.78 0.02 25.96 0.00 

2008:Q1 131.63 0.00 100.41 0.00 80.49 0.00 22.26 0.02 26.69 0.00 

2008:Q2 133.00 0.00 100.51 0.00 80.98 0.00 22.56 0.02 26.71 0.00 
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Table 8B: Fan, Zhang, and Zhang's (2001)  LR-Statistic and P-Values (Starting in 1960:Q1) 

 REG B: h1 REG B: h2 REG B: h3 REG B: h4 REG B: h5 

Vintage LR-Stat P-Value LR-Stat P-Value LR-Stat P-Value LR-Stat P-Value LR-Stat P-Value 

1996:Q1 87.74 0.00 68.40 0.00 62.55 0.00 22.70 0.01 12.62 0.23 

1996:Q2 88.03 0.00 68.76 0.00 62.94 0.00 22.78 0.01 12.61 0.23 

1996:Q3 88.57 0.00 68.87 0.00 63.31 0.00 22.99 0.01 12.63 0.23 

1996:Q4 89.08 0.00 69.32 0.00 63.73 0.00 22.92 0.01 12.65 0.23 

1997:Q1 89.27 0.00 69.75 0.00 64.07 0.00 23.00 0.01 12.53 0.24 

1997:Q2 89.35 0.00 70.81 0.00 64.36 0.00 23.23 0.01 12.59 0.24 

1997:Q3 90.19 0.00 71.22 0.00 64.42 0.00 22.70 0.01 12.34 0.26 

1997:Q4 90.72 0.00 71.62 0.00 64.82 0.00 22.60 0.01 12.64 0.24 

1998:Q1 91.28 0.00 72.05 0.00 64.93 0.00 22.42 0.01 12.50 0.25 

1998:Q2 91.36 0.00 72.60 0.00 65.49 0.00 22.92 0.01 12.46 0.25 

1998:Q3 91.53 0.00 72.95 0.00 65.72 0.00 23.30 0.01 12.25 0.27 

1998:Q4 92.06 0.00 72.95 0.00 66.14 0.00 23.10 0.01 12.17 0.27 

1999:Q1 92.67 0.00 73.32 0.00 66.44 0.00 23.25 0.01 12.02 0.28 

1999:Q2 94.13 0.00 74.85 0.00 66.96 0.00 22.66 0.01 11.61 0.31 

1999:Q3 93.44 0.00 74.80 0.00 67.20 0.00 22.26 0.01 12.18 0.27 

1999:Q4 94.26 0.00 75.04 0.00 67.49 0.00 22.48 0.01 12.11 0.28 

2000:Q1 94.79 0.00 75.13 0.00 67.78 0.00 22.51 0.01 12.34 0.27 

2000:Q2 95.79 0.00 76.75 0.00 68.01 0.00 22.18 0.02 14.59 0.15 

2000:Q3 96.82 0.00 76.76 0.00 68.13 0.00 22.12 0.02 14.40 0.16 

2000:Q4 97.43 0.00 77.35 0.00 68.51 0.00 22.16 0.02 14.42 0.16 

2001:Q1 98.01 0.00 76.94 0.00 68.86 0.00 22.08 0.02 14.41 0.16 

2001:Q2 98.36 0.00 77.70 0.00 70.12 0.00 23.30 0.01 14.97 0.14 

2001:Q3 98.67 0.00 78.08 0.00 70.54 0.00 23.65 0.01 14.84 0.14 

2001:Q4 98.06 0.00 76.79 0.00 69.72 0.00 23.49 0.01 14.75 0.15 

2002:Q1 100.98 0.00 76.59 0.00 69.44 0.00 23.48 0.01 14.48 0.16 

2002:Q2 100.21 0.00 79.16 0.00 69.78 0.00 22.97 0.01 14.79 0.15 

2002:Q3 99.98 0.00 78.23 0.00 70.24 0.00 23.12 0.01 15.37 0.13 

2002:Q4 99.96 0.00 78.70 0.00 70.69 0.00 23.19 0.01 15.53 0.12 

2003:Q1 100.29 0.00 78.83 0.00 70.61 0.00 23.25 0.01 16.04 0.11 

2003:Q2 102.67 0.00 84.23 0.00 76.23 0.00 22.94 0.01 16.46 0.10 

2003:Q3 101.30 0.00 84.82 0.00 76.18 0.00 22.80 0.01 16.58 0.09 

2003:Q4 100.56 0.00 85.23 0.00 76.59 0.00 22.76 0.01 16.97 0.08 

2004:Q1 100.40 0.00 85.59 0.00 77.19 0.00 26.34 0.00 16.86 0.09 

2004:Q2 98.23 0.00 83.72 0.00 73.72 0.00 25.13 0.01 17.02 0.08 

2004:Q3 99.88 0.00 82.77 0.00 73.29 0.00 24.68 0.01 17.34 0.08 

2004:Q4 100.35 0.00 81.66 0.00 73.62 0.00 24.91 0.01 16.98 0.08 

2005:Q1 99.73 0.00 82.38 0.00 73.97 0.00 25.20 0.01 18.86 0.05 

2005:Q2 97.18 0.00 83.05 0.00 77.21 0.00 25.37 0.01 18.86 0.05 

2005:Q3 96.89 0.00 83.69 0.00 78.36 0.00 26.11 0.00 19.34 0.04 

2005:Q4 97.30 0.00 83.67 0.00 78.51 0.00 26.39 0.00 19.46 0.04 

2006:Q1 93.88 0.00 84.70 0.00 78.79 0.00 26.93 0.00 19.61 0.04 

2006:Q2 95.71 0.00 74.82 0.00 70.39 0.00 24.41 0.01 17.23 0.08 

2006:Q3 94.78 0.00 74.67 0.00 70.98 0.00 24.02 0.01 17.44 0.08 

2006:Q4 94.20 0.00 74.96 0.00 67.51 0.00 24.18 0.01 17.78 0.07 

2007:Q1 92.55 0.00 66.95 0.00 65.50 0.00 23.91 0.01 17.46 0.08 

2007:Q2 112.23 0.00 66.85 0.00 67.21 0.00 26.53 0.00 16.70 0.10 

2007:Q3 114.34 0.00 94.44 0.00 67.30 0.00 27.98 0.00 17.14 0.09 

2007:Q4 108.26 0.00 94.60 0.00 67.63 0.00 27.83 0.00 17.16 0.09 

2008:Q1 99.99 0.00 90.99 0.00 79.64 0.00 24.39 0.01 17.46 0.08 

2008:Q2 100.75 0.00 90.71 0.00 79.58 0.00 24.35 0.01 17.55 0.08 
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Table 9A:  Fan, Zhang, and Zhang's (2001)  LR-Statistic and P-Values (Starting in 

1984:Q1) 

 REG A: h1 REG A: h2 REG A: h3 REG A: h4 REG A: h5 

Vintage LR-Stat P-Value LR-Stat P-Value LR-Stat P-Value LR-Stat P-Value LR-Stat P-Value 

1996:Q1 22.97 0.00 14.45 0.06 11.24 0.17 23.38 0.00 34.39 0.00 

1996:Q2 20.50 0.01 14.53 0.06 11.72 0.15 24.70 0.00 35.14 0.00 

1996:Q3 20.64 0.01 14.92 0.06 13.06 0.10 24.52 0.00 36.11 0.00 

1996:Q4 20.17 0.01 14.96 0.06 13.36 0.09 25.42 0.00 36.63 0.00 

1997:Q1 19.73 0.01 14.84 0.06 13.00 0.10 25.64 0.00 36.58 0.00 

1997:Q2 28.65 0.00 16.38 0.04 12.40 0.13 25.28 0.00 23.41 0.00 

1997:Q3 29.81 0.00 26.99 0.00 12.67 0.12 25.06 0.00 23.66 0.00 

1997:Q4 30.59 0.00 27.25 0.00 12.30 0.13 25.52 0.00 23.98 0.00 

1998:Q1 31.07 0.00 27.89 0.00 13.08 0.11 26.15 0.00 23.82 0.00 

1998:Q2 31.32 0.00 28.64 0.00 14.04 0.08 26.73 0.00 24.67 0.00 

1998:Q3 28.40 0.00 18.05 0.02 14.03 0.08 29.05 0.00 27.15 0.00 

1998:Q4 29.21 0.00 31.38 0.00 14.49 0.07 29.97 0.00 28.27 0.00 

1999:Q1 29.52 0.00 31.51 0.00 14.47 0.07 30.64 0.00 29.04 0.00 

1999:Q2 30.01 0.00 31.69 0.00 14.29 0.08 31.52 0.00 29.64 0.00 

1999:Q3 28.96 0.00 30.26 0.00 13.48 0.10 28.35 0.00 29.37 0.00 

1999:Q4 10.65 0.24 7.40 0.52 10.23 0.26 10.83 0.22 22.12 0.00 

2000:Q1 74.49 0.00 45.04 0.00 67.96 0.00 57.99 0.00 87.88 0.00 

2000:Q2 23.19 0.00 12.25 0.16 16.00 0.05 20.95 0.01 25.18 0.00 

2000:Q3 23.58 0.00 11.95 0.17 13.37 0.11 19.55 0.01 25.48 0.00 

2000:Q4 24.53 0.00 11.86 0.18 12.91 0.13 19.69 0.01 25.76 0.00 

2001:Q1 25.47 0.00 11.94 0.18 13.06 0.13 19.78 0.01 26.26 0.00 

2001:Q2 25.59 0.00 13.21 0.12 11.94 0.18 19.58 0.01 22.71 0.00 

2001:Q3 25.56 0.00 13.49 0.12 13.35 0.12 18.21 0.02 24.32 0.00 

2001:Q4 22.80 0.00 11.70 0.19 14.67 0.08 21.03 0.01 25.87 0.00 

2002:Q1 22.69 0.01 12.06 0.18 14.95 0.07 21.85 0.01 26.23 0.00 

2002:Q2 16.93 0.04 12.10 0.18 16.06 0.05 24.09 0.00 26.84 0.00 

2002:Q3 34.10 0.00 18.55 0.02 14.12 0.10 22.13 0.01 25.26 0.00 

2002:Q4 33.55 0.00 18.41 0.02 12.19 0.17 20.59 0.01 25.41 0.00 

2003:Q1 33.61 0.00 18.48 0.02 20.84 0.01 21.01 0.01 25.68 0.00 

2003:Q2 33.64 0.00 18.54 0.02 19.88 0.01 21.07 0.01 24.19 0.00 

2003:Q3 34.03 0.00 19.03 0.02 20.96 0.01 21.42 0.01 24.56 0.00 

2003:Q4 32.57 0.00 21.69 0.01 21.46 0.01 18.06 0.03 24.68 0.00 

2004:Q1 61.90 0.00 26.79 0.00 29.51 0.00 30.44 0.00 22.82 0.00 

2004:Q2 61.00 0.00 27.76 0.00 31.25 0.00 28.41 0.00 23.13 0.00 

2004:Q3 56.62 0.00 25.84 0.00 29.59 0.00 26.55 0.00 21.98 0.01 

2004:Q4 57.86 0.00 25.85 0.00 29.90 0.00 26.72 0.00 22.27 0.01 

2005:Q1 57.44 0.00 26.67 0.00 29.97 0.00 24.76 0.00 28.93 0.00 

2005:Q2 57.83 0.00 24.28 0.00 29.88 0.00 24.79 0.00 27.62 0.00 

2005:Q3 56.79 0.00 21.42 0.01 28.67 0.00 22.72 0.01 27.50 0.00 

2005:Q4 56.20 0.00 21.70 0.01 28.24 0.00 21.59 0.01 26.26 0.00 

2006:Q1 58.77 0.00 22.54 0.01 28.51 0.00 21.75 0.01 26.51 0.00 

2006:Q2 60.04 0.00 23.57 0.00 28.47 0.00 22.37 0.01 25.28 0.00 

2006:Q3 55.76 0.00 22.46 0.01 24.07 0.00 19.70 0.02 21.66 0.01 

2006:Q4 54.97 0.00 22.76 0.01 25.06 0.00 19.81 0.02 22.02 0.01 

2007:Q1 48.78 0.00 22.96 0.01 26.91 0.00 19.08 0.02 22.50 0.01 

2007:Q2 65.51 0.00 22.21 0.01 27.04 0.00 19.39 0.02 21.49 0.01 

2007:Q3 75.51 0.00 52.68 0.00 29.53 0.00 18.04 0.03 21.61 0.01 

2007:Q4 76.62 0.00 53.37 0.00 29.60 0.00 18.21 0.03 21.82 0.01 

2008:Q1 76.87 0.00 60.45 0.00 58.68 0.00 18.00 0.03 23.27 0.01 

2008:Q2 76.17 0.00 61.38 0.00 58.07 0.00 18.45 0.03 22.42 0.01 
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Table 9B:  Fan, Zhang, and Zhang's (2001)  LR-Statistic and P-Values (Starting in 1984:Q1) 

 REG B: h1 REG B: h2 REG B: h3 REG B: h4 REG B: h5 

Vintage LR-Stat P-Value LR-Stat P-Value LR-Stat P-Value LR-Stat P-Value LR-Stat P-Value 

1996:Q1 53.39 0.00 22.95 0.00 18.71 0.01 17.24 0.02 18.03 0.01 

1996:Q2 53.46 0.00 22.98 0.00 18.94 0.01 17.09 0.02 18.08 0.01 

1996:Q3 53.91 0.00 22.54 0.00 19.03 0.01 16.90 0.03 17.48 0.02 

1996:Q4 54.66 0.00 22.85 0.00 19.58 0.01 17.34 0.02 17.70 0.02 

1997:Q1 54.50 0.00 21.12 0.01 19.54 0.01 17.47 0.02 17.64 0.02 

1997:Q2 56.44 0.00 19.67 0.01 20.19 0.01 17.04 0.03 18.13 0.02 

1997:Q3 56.91 0.00 20.68 0.01 20.86 0.01 17.18 0.02 19.26 0.01 

1997:Q4 56.80 0.00 20.95 0.01 21.19 0.01 17.27 0.02 20.75 0.01 

1998:Q1 57.89 0.00 21.49 0.01 21.51 0.01 17.45 0.02 21.08 0.01 

1998:Q2 57.97 0.00 23.98 0.00 21.49 0.01 19.65 0.01 22.08 0.00 

1998:Q3 47.46 0.00 24.34 0.00 21.92 0.01 19.22 0.01 22.91 0.00 

1998:Q4 48.32 0.00 24.62 0.00 22.20 0.00 19.49 0.01 23.64 0.00 

1999:Q1 49.23 0.00 25.04 0.00 22.51 0.00 20.04 0.01 24.43 0.00 

1999:Q2 61.57 0.00 26.17 0.00 23.81 0.00 20.52 0.01 26.82 0.00 

1999:Q3 57.98 0.00 25.49 0.00 23.23 0.00 18.59 0.02 33.13 0.00 

1999:Q4 58.34 0.00 25.28 0.00 23.56 0.00 17.99 0.02 32.89 0.00 

2000:Q1 59.08 0.00 25.35 0.00 23.51 0.00 17.84 0.02 32.71 0.00 

2000:Q2 59.81 0.00 22.25 0.01 21.69 0.01 17.02 0.03 31.51 0.00 

2000:Q3 59.99 0.00 20.70 0.01 18.23 0.02 16.19 0.04 30.07 0.00 

2000:Q4 61.86 0.00 21.09 0.01 18.55 0.02 16.25 0.04 28.31 0.00 

2001:Q1 61.98 0.00 20.46 0.01 18.24 0.02 15.88 0.05 27.79 0.00 

2001:Q2 59.61 0.00 20.81 0.01 16.56 0.04 15.55 0.06 25.22 0.00 

2001:Q3 60.34 0.00 20.55 0.01 16.87 0.04 13.44 0.11 25.12 0.00 

2001:Q4 56.90 0.00 19.30 0.02 17.40 0.03 14.27 0.09 26.26 0.00 

2002:Q1 62.14 0.00 18.82 0.02 16.97 0.04 16.37 0.04 28.11 0.00 

2002:Q2 63.69 0.00 21.49 0.01 19.27 0.02 20.13 0.01 32.86 0.00 

2002:Q3 63.47 0.00 20.75 0.01 19.03 0.02 19.32 0.02 30.88 0.00 

2002:Q4 63.68 0.00 21.18 0.01 19.29 0.02 19.81 0.01 31.33 0.00 

2003:Q1 63.96 0.00 21.38 0.01 18.59 0.02 20.06 0.01 31.49 0.00 

2003:Q2 68.53 0.00 22.92 0.01 22.38 0.01 18.69 0.02 35.32 0.00 

2003:Q3 69.85 0.00 23.64 0.00 22.20 0.01 19.90 0.01 36.15 0.00 

2003:Q4 67.36 0.00 23.63 0.00 22.14 0.01 20.13 0.01 36.51 0.00 

2004:Q1 67.08 0.00 23.57 0.00 22.73 0.01 24.99 0.00 36.70 0.00 

2004:Q2 61.08 0.00 21.47 0.01 23.63 0.00 23.23 0.00 34.82 0.00 

2004:Q3 61.69 0.00 19.27 0.02 21.37 0.01 23.19 0.00 32.71 0.00 

2004:Q4 61.82 0.00 18.66 0.03 21.42 0.01 23.64 0.00 32.11 0.00 

2005:Q1 61.31 0.00 17.90 0.03 21.44 0.01 22.68 0.01 34.87 0.00 

2005:Q2 58.37 0.00 19.51 0.02 24.24 0.00 22.46 0.01 35.81 0.00 

2005:Q3 58.28 0.00 20.22 0.02 23.22 0.01 22.49 0.01 37.01 0.00 

2005:Q4 50.72 0.00 19.85 0.02 23.24 0.01 19.76 0.02 33.01 0.00 

2006:Q1 53.22 0.00 18.84 0.03 22.80 0.01 19.85 0.02 33.31 0.00 

2006:Q2 61.43 0.00 19.50 0.02 18.98 0.02 16.95 0.04 29.00 0.00 

2006:Q3 59.10 0.00 18.69 0.03 18.50 0.03 16.49 0.05 23.63 0.00 

2006:Q4 57.83 0.00 18.77 0.03 19.75 0.02 16.23 0.06 23.22 0.00 

2007:Q1 49.27 0.00 12.42 0.19 20.11 0.02 16.46 0.05 23.29 0.00 

2007:Q2 60.63 0.00 11.86 0.22 19.57 0.02 14.60 0.10 23.42 0.00 

2007:Q3 62.22 0.00 27.45 0.00 20.23 0.02 14.54 0.10 24.79 0.00 

2007:Q4 64.23 0.00 28.22 0.00 20.21 0.02 14.77 0.09 25.19 0.00 

2008:Q1 64.02 0.00 30.84 0.00 22.57 0.01 15.92 0.07 29.76 0.00 

2008:Q2 64.43 0.00 28.47 0.00 21.73 0.01 15.74 0.07 27.79 0.00 

 

 

 


