[go: up one dir, main page]

Skip to main content
Log in

Pose Estimation of 3D Free-Form Contours

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In this article we discuss the 2D-3D pose estimation problem of 3D free-form contours. In our scenario we observe objects of any 3D shape in an image of a calibrated camera. Pose estimation means to estimate the relative position and orientation (containing a rotation and translation) of the 3D object to the reference camera system. The fusion of modeling free-form contours within the pose estimation problem is achieved by using the conformal geometric algebra. The conformal geometric algebra is a geometric algebra which models entities as stereographically projected entities in a homogeneous model. This leads to a linear description of kinematics on the one hand and projective geometry on the other hand. To model free-form contours in the conformal framework we use twists to model cycloidal curves as twist-depending functions and interpret n-times nested twist generated curves as functions generated by 3D Fourier descriptors. This means, we use the twist concept to apply a spectral domain representation of 3D contours within the pose estimation problem. We will show that twist representations of objects can be numerically efficient and easily be applied to the pose estimation problem. The pose problem itself is formalized as implicit problem and we gain constraint equations, which have to be fulfilled with respect to the unknown rigid body motion. Several experiments visualize the robustness and real-time performance of our algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Arbter, K. 1989. Affine-invariant fourier descriptors. In From Pixels to Features, Simon J.C. (Ed.), Elsevier Science Publishers, pp. 153–164.

  • Arbter, K. 1990. Affininvariante Fourierdeskriptoren ebener Kurven Technische Universität Hamburg-Harburg, PhD Thesis.

  • Arbter, K., Snyder, W.E., Burkhardt, H., and Hirzinger, G. 1990. Application of affine-invariant fourier descriptors to recognition of 3-D objects. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 12(7):640–647.

    Article  Google Scholar 

  • Arbter, K. and Burkhardt, H. 1991. Ein Fourier-Verfahren zur Bestimmung von Merkmalen und Schätzung der Lageparameter ebener Raumkurven. Informationstechnik, 33(1):19–26.

    Google Scholar 

  • Bayro-Corrochanno, E., Daniilidis, K., and Sommer, G. 2000. Motor algebra for 3D kinematics. The case of the hand–eye calibration. Journal of Mathematical Imaging and Vision, JMIV, 13(2):79–99.

    Google Scholar 

  • Besl, P.J. 1990. The free-form surface matching problem. In Machine Vision for Three-Dimensional Scenes, H. Freemann (Ed.), Academic Press, San Diego, pp. 25–71.

    Google Scholar 

  • Blaschke, W. 1960. Kinematik und Quaternionen, Mathematische Monographien 4. Deutscher Verlag der Wissenschaften.

  • Bregler, C. and Malik, J. 1998. Tracking people with twists and exponential maps. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Santa Barbara, California, pp. 8–15.

  • Chiuso, A. and Picci, G. 1998. Visual tracking of points as estimation on the unit sphere. In The Confluence of Vision and Control, Springer-Verlag, pp. 90–105.

  • CLU Library. 2001. A C++ Library for Clifford Algebra. available at http://www.perwass.de/CLU Lehrstuhl für kognitive Systeme, University Kiel.

  • Campbell, R.J. and Flynn, P.J. 2001. A survey of free-form object representation and recognition techniques. CVIU: Computer Vision and Image Understanding, (81):166–210.

    Article  Google Scholar 

  • O’Connor, J.J. and Robertson, E.F. Famous Curves Index. http://www-history.mcs.st-andrews.ac.uk/history/Curves/Curves.html

  • Czopf, A., Brack, C., Roth, M., and Schweikard, A. 1999. 3D–2D registration of curved objects. Periodica Polytechnica, 43(1):19–41.

    Google Scholar 

  • Drummond, T. and Cipolla, R. 2000. Real-time tracking of multiple articulated structures in multiple views. In 6th European Conference on Computer Vision, ECCV 2000, Dubline, Ireland, Part II, pp. 20–36.

  • Faugeras, O. 1995. Stratification of three-dimensional vision: Projective, affine and metric representations. Journal of Optical Society of America, 12(3).

  • Fenske, A. 1993. Affin-invariante Erkennung von Grauwertmustern mit Fourierdeskriptoren. Mustererkennung 1993, Springer-Verlag, pp. 75–83.

  • Gallier, J. 2001. Geometric Methods and Applications. For Computer Science and Engineering. Springer Verlag, New York Inc.

    Google Scholar 

  • Granlund, G. 1972. Fourier preprocessing for hand print character recognition. IEEE Transactions on Computers, 21:195–201.

    Google Scholar 

  • Grimson, W.E.L. 1990. Object Recognition by Computer. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Hestenes, D. 1994. Invariant body kinematics: I. Saccadic and compensatory eye movements. Neural Networks, (7):65–77.

    Article  Google Scholar 

  • Hestenes, D., Li, H., and Rockwood, A. 2001. New algebraic tools for classical geometry. In (Sommer, 2001), pp. 3–23.

  • Hestenes, D. and Sobczyk, G. 1984. Clifford Algebra to Geometric Calculus. D. Reidel Publ. Comp., Dordrecht.

    Google Scholar 

  • Hestenes, D. and Ziegler, R. 1991. Projective geometrie with Clifford algebra. Acta Applicandae Mathematicae, 23:25–63.

    Article  Google Scholar 

  • Kauppinen, H., Seppänen, T., and Pietikäinen, M. 1995. An experimental comparison of autoregressive and fourier-based descriptors in 2D shape classification. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 17(2):201–207.

    Article  Google Scholar 

  • Horaud, R., Phong, T.Q., and Tao, P.D. 1995. Object pose from 2-d to 3-d point and line correspondences. International Journal of Computer Vision (IJCV), 15:225–243.

    Article  Google Scholar 

  • Huber, D.F. and Hebert, M. 2001. Fully automatic registration of multiple 3D data sets. IEEE Computer Society Workshop on Computer Vision Beyond the Visible Spectrum(CVBVS 2001).

  • Kaminski, J.Y., Fryers, M., Shashua, A., and Teicher, M. 2001. Multiple View Geometry of Non-planar Algebraic Curves. In Proceedings IEEE International Conference on Computer Vision, ICCV 2001, 2:181–186.

    Google Scholar 

  • Klingspohr, H., Block, T., and Grigat, R.-R. 1997. A passive real-time gaze estimation system for human-machine interfaces. In Computer Analysis of Images and Patterns (CAIP), G. Sommer, K. Daniilidis, and J. Pauli (Eds.), LNCS 1296, Springer-Verlag Heidelberg, Kiel, pp. 718–725.

    Google Scholar 

  • Kriegman, D.J., Vijayakumar, B., and Ponce, J. 1992. Constraints for recognizing and locating curved 3D objects from monocular image features. In Proceedings of Computer Vision (ECCV /92), G. Sandini (Ed.), LNCS 588, Springer-Verlag, pp. 829–833.

  • Li, H., Hestenes, D., and Rockwood, A. 2001. Generalized homogeneous coordinates for computational geometry. In (Sommer, 2001) pp. 27–52.

  • X. Lee A Visual Dictionary of Special Plane Curves. http://xahlee.org/SpecialPlaneCurves_dir/specialPlaneCurves.html

  • Lin, C.-S. and Hwang, C.-L. 1987. New forms of shape invariants from elliptic fourier descriptors. Pattern Recognition, 20(5):535–545.

    Article  Google Scholar 

  • Lowe, D.G. 1980. Solving for the parameters of object models from image descriptions. In Proc. ARPA Image Understanding Workshop, pp. 121–127.

  • Lowe, D.G. 1987. Three-dimensional object recognition from single two-dimensional images. Artificial Intelligence, 31(3):355–395.

    Article  Google Scholar 

  • McCarthy, J.M. 1990. Introduction to Theoretical Kinematics. MIT Press, Cambridge, MA, London, England.

    Google Scholar 

  • Murray, R.M., Li, Z., and Sastry, S.S. 1994. A Mathematical Introduction to Robotic Manipulation. CRC Press.

  • Needham, T. 1997. Visual Complex Analysis. Oxford University Press.

  • Perwass, C. and Hildenbrand, D. 2003. Aspects of Geometric Algebra in Euclidean, Projective and Conformal Space. An Introductory Tutorial. Technical Report 0310, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische Mathematik.

  • Perwass, C. and Lasenby, J. 1999. A novel axiomatic derivation of geometric algebra. Technical Report CUED/F - INFENG/TR.347, Cambridge University Engineering Department.

  • Perwass, C. and Lasenby, L. 2001. A unified description of multiple view geometry. In (Sommer, 2001), pp. 337–369.

  • Reiss, T.H. 1993. Recognizing Planar Objects Using Invariant Image Features. LNCS 676, Springer Verlag.

  • Rooney, J. 1978. A comparison of representations of general spatial screw displacement In Environment and Planning B, 5:45–88.

    Google Scholar 

  • Rosenhahn, B. 2003. Pose Estimation Revisited Technical Report 0308, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische Mathematik. Available at http://www.ks.informatik.uni-kiel.de

  • Rosenhahn, B., Zhang, Y., and Sommer, G. 2000. Pose estimation in the language of kinematics. In Second International Workshop, Algebraic Frames for the Perception-Action Cycle, AFPAC 2000, G. Sommer and Y.Y. Zeevi (Eds.), LNCS 1888, Springer-Verlag, Heidelberg, pp. 284–293.

  • Rosenhahn, B., Granert, O., and Sommer, G. 2002. Monocular pose estimation of kinematic chains. In Applied Geometric Algebras for Computer Science and Engineering, Birkhäuser Verlag, L. Dorst, C. Doran, and J. Lasenby (Eds.), pp. 373–383.

  • Rosenhahn, B. and Sommer, G. 2002. Pose estimation from different entities. Part I: The stratification of mathematical spaces. Part II: Pose constraints. Technical Report 0206, University Kiel.

  • Rusinkiewicz, S. and Levoy, M. 2001. Efficient variants of the ICP algorithm. Available at http://www.cs.princeton. edu/smr/papers/fasticp/. Presented at Third International Conference on 3D Digital Imaging and Modeling (3DIM).

  • Selig, J.M. 2000. Geometric Foundations of Robotics. World Scientific Publishing.

  • Sommer, G. (Ed.). 2001. Geometric Computing with Clifford Algebra. Springer Verlag.

  • Stark, K. 1996. A method for tracking the pose of known 3D objects based on an active contour model. Technical Report TUD/FI 96 10, TU Dresden.

  • Tello, R. 1995. Fourier descriptors for computer graphics. IEEE Transactions on Systems, Man, and Cybernetics, 25(5):861–865.

    Google Scholar 

  • Ude, A. 1999. Filtering in a unit quaternion space for model-based object tracking. Robotics and Autonomous Systems, 28(2–3):163–172.

    Article  Google Scholar 

  • Walker, M.W. and Shao, L. 1991. Estimating 3-d location parameters using dual number quaternions. CVGIP: Image Understanding, 54(3):358–367.

    Article  Google Scholar 

  • Zerroug, M. and Nevatia, R. 1996. Pose estimation of multi-part curved objects. In Image Understanding Workshop (IUW), pp. 831–835.

  • Zang, Z. 1999. Iterative point matching for registration of free-form curves and surfaces. IJCV: International Journal of Computer Vision, 13(2):119–152.

    Article  Google Scholar 

  • Zahn, C.T. and Roskies, R.Z. 1972. Fourier descriptors for plane closed curves. IEEE Transactions on Computers, 21(3):269–281.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodo Rosenhahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenhahn, B., Perwass, C. & Sommer, G. Pose Estimation of 3D Free-Form Contours. Int J Comput Vision 62, 267–289 (2005). https://doi.org/10.1007/s11263-005-4883-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-005-4883-3

Keywords

Navigation