Abstract
The circadian clock couples physiological processes and behaviors to environmental light cycles. This coupling ensures the synchronization of energetically expensive processes to the time of day at which an organism is most active, thus improving overall fitness. Host immunity is an energetically intensive process that requires the coordination of multiple immune cell types to sense, communicate, and respond to a variety of microorganisms. Interestingly the circadian clock entrains immune cell development, function, and trafficking to environmental light cycles. This entrainment results in the variation of host susceptibility to microbial pathogens across the day-night cycle. In addition, the circadian clock engages in bi-directional communication with the microbiota, resident microorganisms that reside in proximity to the epithelial surfaces of animals. This bi-directional interchange plays an essential role in regulating host immunity and is also pivotal for the circadian control of metabolism. Here, we review the role of the circadian clock in directing host immune programs and consider how commensal and pathogenic microbes impact circadian physiological processes.
Similar content being viewed by others
References
Asher G, Sassone-Corsi P (2015) Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 161:84–92. https://doi.org/10.1016/j.cell.2015.03.015
Shultzaberger RK, Boyd JS, Diamond S, Greenspan RJ, Golden SS (2015) Giving time purpose: the Synechococcus elongatus clock in a broader network context. Annu Rev Genet 49:485–505. https://doi.org/10.1146/annurev-genet-111212-133227
Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A (2013) Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science 341:1483–1488. https://doi.org/10.1126/science.1240636
Adrover JM, Del Fresno C, Crainiciuc G et al (2019) A neutrophil timer coordinates immune defense and vascular protection. Immunity 50:390–402.e10. https://doi.org/10.1016/j.immuni.2019.01.002
Druzd D, Matveeva O, Ince L, Harrison U, He W, Schmal C, Herzel H, Tsang AH, Kawakami N, Leliavski A, Uhl O, Yao L, Sander LE, Chen CS, Kraus K, de Juan A, Hergenhan SM, Ehlers M, Koletzko B, Haas R, Solbach W, Oster H, Scheiermann C (2017) Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity 46:120–132. https://doi.org/10.1016/j.immuni.2016.12.011
Yu X, Rollins D, Ruhn KA, Stubblefield JJ, Green CB, Kashiwada M, Rothman PB, Takahashi JS, Hooper LV (2013) TH17 cell differentiation is regulated by the circadian clock. Science 342:727–730. https://doi.org/10.1126/science.1243884
Teng F, Goc J, Zhou L et al (2019) A circadian clock is essential for homeostasis of group 3 innate lymphoid cells in the gut. Sci Immunol 4:eaax1215. https://doi.org/10.1126/sciimmunol.aax1215
Wang Q, Robinette ML, Billon C et al (2019) Circadian rhythm-dependent and circadian rhythm-independent impacts of the molecular clock on type 3 innate lymphoid cells. Sci Immunol 4:eaay7501. https://doi.org/10.1126/sciimmunol.aay7501
Godinho-Silva C, Domingues RG, Rendas M et al (2019) Light-entrained and brain-tuned circadian circuits regulate ILC3s and gut homeostasis. Nature:1–22. https://doi.org/10.1038/s41586-019-1579-3
Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M, Kay SA, van Gelder R, Hogenesch JB (2003) Melanopsin is required for non–image-forming photic responses in blind mice. Science 301:525–527. https://doi.org/10.1126/science.1086179
Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35:445–462. https://doi.org/10.1146/annurev-neuro-060909-153128
Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18:164–179. https://doi.org/10.1038/nrg.2016.150
Izumo M, Pejchal M, Schook AC, Lange RP, Walisser JA, Sato TR, Wang X, Bradfield CA, Takahashi JS (2014) Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant. Elife 3:350. https://doi.org/10.7554/eLife.04617
Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4:649–661. https://doi.org/10.1038/nrn1177
Kyriacou CP, Hastings MH (2010) Circadian clocks: genes, sleep, and cognition. Trends Cogn Sci (Regul Ed) 14:259–267. https://doi.org/10.1016/j.tics.2010.03.007
King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TDL, Vitaterna MH, Kornhauser JM, Lowrey PL, Turek FW, Takahashi JS (1997) Positional cloning of the mouse circadian clock gene. Cell 89:641–653. https://doi.org/10.1016/s0092-8674(00)80245-7
Gekakis N, Staknis D, Nguyen HB et al (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–1569. https://doi.org/10.1126/science.280.5369.1564
Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert SM (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98:193–205. https://doi.org/10.1016/s0092-8674(00)81014-4
Shearman LP, Sriram S, Weaver DR et al (2000) Interacting molecular loops in the mammalian circadian clock. Science 288:1013–1019. https://doi.org/10.1126/science.288.5468.1013
Ye R, Selby CP, Ozturk N, Annayev Y, Sancar A (2011) Biochemical analysis of the canonical model for the mammalian circadian clock. J Biol Chem 286:25891–25902. https://doi.org/10.1074/jbc.M111.254680
Ye R, Selby CP, Chiou Y-Y, Ozkan-Dagliyan I, Gaddameedhi S, Sancar A (2014) Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock. Genes Dev 28:1989–1998. https://doi.org/10.1101/gad.249417.114
Preitner N, Damiola F, Lopez-Molina L et al (2002) The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260. https://doi.org/10.1016/s0092-8674(02)00825-5
Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, Naik KA, FitzGerald GA, Kay SA, Hogenesch JB (2004) A functional genomics strategy reveals Rorα as a component of the mammalian circadian clock. Neuron 43:527–537. https://doi.org/10.1016/j.neuron.2004.07.018
Guillaumond F, Dardente H, Giguère V, Cermakian N (2005) Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 20:391–403. https://doi.org/10.1177/0748730405277232
Ripperger JA, Shearman LP, Reppert SM, Schibler U (2000) CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev 14:679–689
Mitsui S, Yamaguchi S, Matsuo T, Ishida Y, Okamura H (2001) Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev 15:995–1006. https://doi.org/10.1101/gad.873501
Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37:187–192. https://doi.org/10.1038/ng1504
Oishi K, Miyazaki K, Kadota K, Kikuno R, Nagase T, Atsumi GI, Ohkura N, Azama T, Mesaki M, Yukimasa S, Kobayashi H, Iitaka C, Umehara T, Horikoshi M, Kudo T, Shimizu Y, Yano M, Monden M, Machida K, Matsuda J, Horie S, Todo T, Ishida N (2003) Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J Biol Chem 278:41519–41527. https://doi.org/10.1074/jbc.M304564200
Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T, Liu XS, Lazar MA (2011) A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331:1315–1319. https://doi.org/10.1126/science.1198125
Kuang Z, Wang Y, Li Y, Ye C, Ruhn KA, Behrendt CL, Olson EN, Hooper LV (2019) The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science 365:1428–1434. https://doi.org/10.1126/science.aaw3134
Belden WJ, Dunlap JC (2008) SIRT1 is a circadian deacetylase for core clock components. Cell 134:212–214. https://doi.org/10.1016/j.cell.2008.07.010
Green CB, Takahashi JS, Bass J (2008) The meter of metabolism. Cell 134:728–742. https://doi.org/10.1016/j.cell.2008.08.022
McLoughlin SC, Haines P, FitzGerald GA (2015) Clocks and cardiovascular function. Meth Enzymol 552:211–228. https://doi.org/10.1016/bs.mie.2014.11.029
Tsang AH, Astiz M, Friedrichs M, Oster H (2016) Endocrine regulation of circadian physiology. J Endocrinol 230:R1–R11. https://doi.org/10.1530/JOE-16-0051
Hemmers S, Rudensky AY (2015) The cell-intrinsic circadian clock is dispensable for lymphocyte differentiation and function. Cell Rep 11:1339–1349. https://doi.org/10.1016/j.celrep.2015.04.058
Yu X, Wang Y, Deng M, Li Y, Ruhn KA, Zhang CC, Hooper LV (2014) The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. Elife 3:945–920. https://doi.org/10.7554/eLife.04406
Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA, Kunisawa J, Shibata N, Grunberg S, Sinha R, Zahm AM, Tardif MR, Sathaliyawala T, Kubota M, Farber DL, Collman RG, Shaked A, Fouser LA, Weiner DB, Tessier PA, Friedman JR, Kiyono H, Bushman FD, Chang KM, Artis D (2012) Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336:1321–1325. https://doi.org/10.1126/science.1222551
Shirasu-Hiza MM, Dionne MS, Pham LN, Ayres JS, Schneider DS (2007) Interactions between circadian rhythm and immunity in Drosophila melanogaster. Curr Biol 17:R353–R355. https://doi.org/10.1016/j.cub.2007.03.049
Edgar RS, Stangherlin A, Nagy AD, Nicoll MP, Efstathiou S, O’Neill JS, Reddy AB (2016) Cell autonomous regulation of herpes and influenza virus infection by the circadian clock. Proc Natl Acad Sci USA 113:10085–10,090. https://doi.org/10.1073/pnas.1601895113
Hopwood TW, Hall S, Begley N, Forman R, Brown S, Vonslow R, Saer B, Little MC, Murphy EA, Hurst RJ, Ray DW, MacDonald AS, Brass A, Bechtold DA, Gibbs JE, Loudon AS, Else KJ (2018) The circadian regulator BMAL1 programmes responses to parasitic worm infection via a dendritic cell clock. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-22021-5
Bellet MM, Deriu E, Liu JZ, Grimaldi B, Blaschitz C, Zeller M, Edwards RA, Sahar S, Dandekar S, Baldi P, George MD, Raffatellu M, Sassone-Corsi P (2013) Circadian clock regulates the host response to Salmonella. Proc Natl Acad Sci USA 110:9897–9902. https://doi.org/10.1073/pnas.1120636110
Hirako IC, Assis PA, Hojo-Souza NS et al (2018) Daily rhythms of TNFα expression and food intake regulate synchrony of Plasmodium stages with the host circadian cycle. Cell Host Microbe 23:796–808.e6. https://doi.org/10.1016/j.chom.2018.04.016
Rijo-Ferreira F, Acosta-Rodríguez VA, Abel JH et al (2020) The malaria parasite has an intrinsic clock. Science 368:746–753. https://doi.org/10.1126/science.aba2658
Wang Y, Kuang Z, Yu X, Ruhn KA, Kubo M, Hooper LV (2017) The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science 357:912–916. https://doi.org/10.1126/science.aan0677
Mukherji A, Kobiita A, Ye T, Chambon P (2013) Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. 1–16. https://doi.org/10.1016/j.cell.2013.04.020
Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, Pierre JF, Heneghan AF, Nadimpalli A, Hubert N, Zale E, Wang Y, Huang Y, Theriault B, Dinner AR, Musch MW, Kudsk KA, Prendergast BJ, Gilbert JA, Chang EB (2015) Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17:681–689. https://doi.org/10.1016/j.chom.2015.03.006
Hooper LV, Stappenbeck TS, Hong CV, Gordon JI (2003) Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 4:269–273. https://doi.org/10.1038/ni888
Cash HL, Whitham CV, Behrendt CL, Hooper LV (2006) Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313:1126–1130. https://doi.org/10.1126/science.1127119
Propheter DC, Chara AL, Harris TA, Ruhn KA, Hooper LV (2017) Resistin-like molecule β is a bactericidal protein that promotes spatial segregation of the microbiota and the colonic epithelium. Proc Natl Acad Sci USA 114:11027–11033. https://doi.org/10.1073/pnas.1711395114
Bäckhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723. https://doi.org/10.1073/pnas.0407076101
Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 104:979–984. https://doi.org/10.1073/pnas.0605374104
Ley RE, Bäckhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075. https://doi.org/10.1073/pnas.0504978102
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484. https://doi.org/10.1038/nature07540
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. https://doi.org/10.1038/nature05414
Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, Abramson L, Katz MN, Korem T, Zmora N, Kuperman Y, Biton I, Gilad S, Harmelin A, Shapiro H, Halpern Z, Segal E, Elinav E (2014) Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159:514–529. https://doi.org/10.1016/j.cell.2014.09.048
Zarrinpar A, Chaix A, Yooseph S, Panda S (2014) Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab 20:1006–1017. https://doi.org/10.1016/j.cmet.2014.11.008
Thaiss CA, Levy M, Korem T, Dohnalová L, Shapiro H, Jaitin DA, David E, Winter DR, Gury-BenAri M, Tatirovsky E, Tuganbaev T, Federici S, Zmora N, Zeevi D, Dori-Bachash M, Pevsner-Fischer M, Kartvelishvily E, Brandis A, Harmelin A, Shibolet O, Halpern Z, Honda K, Amit I, Segal E, Elinav E (2016) Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167:1495–1510. https://doi.org/10.1016/j.cell.2016.11.003
Koike N, Yoo S-H, Huang H-C, Kumar V, Lee C, Kim TK, Takahashi JS (2012) Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338:349–354. https://doi.org/10.1126/science.1226339
Liang X, Bushman FD, FitzGerald GA (2015) Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc Natl Acad Sci USA 112:10479–10484. https://doi.org/10.1073/pnas.1501305112
Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, Bass J (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6:414–421. https://doi.org/10.1016/j.cmet.2007.09.006
Joyce SA, MacSharry J, Casey PG, Kinsella M, Murphy EF, Shanahan F, Hill C, Gahan CGM (2014) Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci USA 111:7421–7426. https://doi.org/10.1073/pnas.1323599111
Joyce SA, Shanahan F, Hill C, Gahan CG (2014) Bacterial bile salt hydrolase in host metabolism: Potential for influencing gastrointestinal microbe-host crosstalk. Gut Microbes 5:669–674. https://doi.org/10.4161/19490976.2014.969986
Govindarajan K, MacSharry J, Casey PG, Shanahan F, Joyce SA, Gahan CGM (2016) Unconjugated bile acids influence expression of circadian genes: a potential mechanism for microbe-host crosstalk. PLoS One 11:e0167319. https://doi.org/10.1371/journal.pone.0167319
Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL (2019) Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570:462–467. https://doi.org/10.1038/s41586-019-1291-3
Bechtold DA, Loudon ASI (2013) Hypothalamic clocks and rhythms in feeding behaviour. Trends Neurosci 36:74–82. https://doi.org/10.1016/j.tins.2012.12.007
Knutsson A, Bøggild H (2010) Gastrointestinal disorders among shift workers. Scand J Work Environ Health 36:85–95
Mohren DCL, Jansen NWH, Kant IJ, Galama JMD, van den Brandt PA, Swaen GMH (2002) Prevalence of common infections among employees in different work schedules. J Occup Environ Med 44:1003–1011
Bechtold DA, Gibbs JE, Loudon ASI (2010) Circadian dysfunction in disease. Trends in Pharmacological Sciences 31:191–198. https://doi.org/10.1016/j.tips.2010.01.002
Swanson GR, Burgess HJ, Keshavarzian A (2011) Sleep disturbances and inflammatory bowel disease: a potential trigger for disease flare? Expert Rev Clin Immunol 7:29–36. https://doi.org/10.1586/eci.10.83
Reid KJ, Baron KG, Zee PC (2014) Meal timing influences daily caloric intake in healthy adults. Nutr Res 34:930–935. https://doi.org/10.1016/j.nutres.2014.09.010
Silver AC, Arjona A, Walker WE, Fikrig E (2012) The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity. Immunity 36:251–261. https://doi.org/10.1016/j.immuni.2011.12.017
Funding
JFB is supported by a Howard Hughes Medical Institute Hanna Gray Fellowship. LVH is an Investigator of the Howard Hughes Medical Institute, and the work in the Hooper Lab is supported by NIH grant R01 DK070855 to LVH, and the Walter M. and Helen D. Bader Center for Research on Arthritis and Autoimmune Diseases.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Disclaimer
The funders had no role in the preparation of the manuscript.
Additional information
This article is a contribution to the special issue on: Neuro-immune Interactions - Guest Editor: David Farrar
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Brooks, J.F., Hooper, L.V. Interactions among microbes, the immune system, and the circadian clock. Semin Immunopathol 42, 697–708 (2020). https://doi.org/10.1007/s00281-020-00820-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00281-020-00820-1