[go: up one dir, main page]

Skip to main content

From Coinductive Proofs to Exact Real Arithmetic

  • Conference paper
Computer Science Logic (CSL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5771))

Included in the following conference series:

Abstract

We give a coinductive characterization of the set of continuous functions defined on a compact real interval, and extract certified programs that construct and combine exact real number algorithms with respect to the binary signed digit representation of real numbers. The data type corresponding to the coinductive definition of continuous functions consists of finitely branching non-wellfounded trees describing when the algorithm writes and reads digits. This is a pilot study in using proof-theoretic methods for certified algorithms in exact real arithmetic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Marcial-Romero, J.R., Escardo, M.H.: Semantics of a sequential language for exact real-number computation. Theor. Comput. Sci. 379, 120–141 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Geuvers, H., Niqui, M., Spitters, B., Wiedijk, F.: Constructive analysis, types and exact real numbers. Math. Struct. Comput. Sci. 17, 3–36 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Edalat, A., Heckmann, R.: Computing with real numbers: I. The LFT approach to real number computation; II. A domain framework for computational geometry. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 193–267. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Ciaffaglione, A., Di Gianantonio, P.: A certified, corecursive implementation of exact real numbers. Theor. Comput. Sci. 351, 39–51 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Bertot, Y.: Affine functions and series with co-inductive real numbers. Math. Struct. Comput. Sci. 17, 37–63 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berger, U., Hou, T.: Coinduction for exact real number computation. Theory Comput. Sys. (to appear, 2009)

    Google Scholar 

  7. Niqui, M.: Coinductive formal reasoning in exact real arithmetic. Logical Methods in Computer Science 4, 1–40 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Schwichtenberg, H.: Realizability interpretation of proofs in constructive analysis. Theory Comput. Sys. (to appear, 2009)

    Google Scholar 

  9. Berger, U., Seisenberger, M.: Applications of inductive definitions and choice principles to program synthesis. In: Crosilla, L., Schuster, P. (eds.) From Sets and Types to Topology and Analysis Towards practicable foundations for constructive mathematics. Oxford Logic Guides, vol. 48, pp. 137–148. Oxford University Press, Oxford (2005)

    Chapter  Google Scholar 

  10. Ghani, N., Hancock, P., Pattinson, D.: Continuous functions on final coalgebras. Electr. Notes in Theoret. Comp. Sci. 164 (2006)

    Google Scholar 

  11. Buchholz, W., Feferman, F., Pohlers, W., Sieg, W.: Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof–Theoretical Studies. Lecture Notes in Mathematics, vol. 897. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  12. Bradfield, J., Stirling, C.: Modal mu-calculi. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic. Studies in Logic and Practical Reasoning, vol. 3, pp. 721–756. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  13. Gierz, G., Hofmann, K., Keimel, K., Lawson, J., Mislove, M., Scott, D.: Continuous Lattices and Domains. Encyclopedia of Mathematics and its Applications, vol. 93. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  14. Kreisel, G.: Interpretation of analysis by means of constructive functionals of finite types. Constructivity in Mathematics, 101–128 (1959)

    Google Scholar 

  15. Tatsuta, M.: Realizability of monotone coinductive definitions and its application to program synthesis. In: Jeuring, J. (ed.) MPC 1998. Lecture Notes in Mathematics, vol. 1422, pp. 338–364. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  16. Troelstra, A.: Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. Lecture Notes in Mathematics, vol. 344. Springer, Heidelberg (1973)

    MATH  Google Scholar 

  17. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handb. Logic Comput. Sci., vol. 3, pp. 1–168. Clarendon Press, Oxford (1994)

    Google Scholar 

  18. Malcolm, G.: Data structures and program transformation. Science of Computer Programming 14, 255–279 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hancock, P., Setzer, A.: Guarded induction and weakly final coalgebras in dependent type theory. In: Crosilla, L., Schuster, P. (eds.) From Sets and Types to Topology and Analysis. Towards Practicable Foundations for Constructive Mathematics, pp. 115–134. Clarendon Press, Oxford (2005)

    Chapter  Google Scholar 

  20. Abel, A., Matthes, R., Uustalu, T.: Iteration and coiteration schemes for higher-order and nested datatypes. Theor. Comput. Sci. 333, 3–66 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Capretta, V., Uustalu, T., Vene, V.: Recursive coalgebras from comonads. Information and Computation 204, 437–468 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Konečný, M.: Real functions incrementally computable by finite automata. Theor. Comput. Sci. 315, 109–133 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Blanck, J.: Efficient exact computation of iterated maps. Journal of Logic and Algebraic Programming 64, 41–59 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Plume, D.: A Calculator for Exact Real Number Computation. PhD thesis. University of Edinburgh (1998)

    Google Scholar 

  25. Benl, H., Berger, U., Schwichtenberg, H., Seisenberger, M., Zuber, W.: Proof theory at work: Program development in the Minlog system. In: Bibel, W., Schmitt, P. (eds.) Automated Deduction – A Basis for Applications. Applied Logic Series, vol. II, pp. 41–71. Kluwer, Dordrecht (1998)

    Chapter  Google Scholar 

  26. Scriven, A.: A functional algorithm for exact real integration with invariant measures. Electron. Notes Theor. Comput. Sci. 218, 337–353 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berger, U. (2009). From Coinductive Proofs to Exact Real Arithmetic. In: Grädel, E., Kahle, R. (eds) Computer Science Logic. CSL 2009. Lecture Notes in Computer Science, vol 5771. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04027-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04027-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04026-9

  • Online ISBN: 978-3-642-04027-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics