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Accepted: 13 December 2022 / Published online: 5 January 2023
� The Author(s) 2023

Abstract
Anomaly detection in industrial control and cyber-physical systems has gained much attention over the past years due to

the increasing modernisation and exposure of industrial environments. Current dangers to the connected industry include

the theft of industrial intellectual property, denial of service, or the compromise of cloud components; all of which might

result in a cyber-attack across the operational network. However, most scientific work employs device logs, which

necessitate substantial understanding and preprocessing before they can be used in anomaly detection. In this paper, we

propose a network intrusion detection system (NIDS) architecture based on a deep autoencoder trained on network flow

data, which has the advantage of not requiring prior knowledge of the network topology or its underlying architecture.

Experimental results show that the proposed model can detect anomalies, caused by distributed denial of service attacks,

providing a high detection rate and low false alarms, outperforming the state-of-the-art and a baseline model in an

unsupervised learning environment. Furthermore, the deep autoencoder model can detect abnormal behaviour in legitimate

devices after an attack. We also demonstrate the suitability of the proposed NIDS in a real industrial plant from the

alimentary sector, analysing the false positive rate and the viability of the data generation, filtering and preprocessing

procedure for a near real time scenario. The suggested NIDS architecture is a low-cost solution that uses only fifteen

network-based features, requires minimal processing, operates in unsupervised mode, and is straightforward to deploy in

real-world scenarios.

Keywords Network intrusion detection system � Anomaly detection � Industrial control systems � Cyber-physical systems �
Industrial cybersecurity � Deep autoencoder

1 Introduction

Modern industrial control systems (ICS) make use of

advanced information technology to control cyber-physical

processes, and are connected to external systems such as

cloud environments. Furthermore, most ICS communica-

tion protocols are obsolete and lack inherent security,

making them a prime target for cyberattacks. For example,

Industrial Ethernet is a popular protocol, but it lacks fun-

damental security features such as encryption and

authentication.
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Attacks on cyber-physical systems have become a

reality with the discovery of Stuxnet in 2010 [25]. Unlike

attacks on information systems, cyberattacks have a

physical impact on industrial devices, causing delays or

stoppage in production. Reactive security methods (such as

anomaly detection) should be used in addition to traditional

security mechanisms currently in place on ICS, such as

access control.

Specific solutions for safeguarding operational settings

should handle the unique availability and real-time condi-

tions that characterise industrial control systems. Taking

this into consideration, we have developed an unsupervised

framework for anomaly detection that is protocol and

network agnostic. We enable the anomaly detection

framework on network flow data to achieve this goal: real-

time and availability limitations are harsh on field-level

devices that are dedicated to executing only one activity.

Furthermore, because field-level devices have limited

memory and computing capability, it is frequently impos-

sible to execute other software on them. For these reasons,

deploying a host-based intrusion detection system is fre-

quently difficult, leaving only a network-based imple-

mentation as a viable option.

A network intrusion detection system (NIDS) based on

flow data can be implemented without knowledge of the

network topology and without the need for any modifica-

tion or manipulation of existing industrial equipment. Data

can be collected, for example, by passively listening to a

network switch’s span port and capturing network flow

data without interfering with the main operation of indus-

trial devices. This method provides complete visibility of

the industrial network, allowing real-time monitoring and

detection of malicious network traffic. Furthermore, by

using network flow data, instead of raw traffic captures or

device logs (a frequent approach in ICS anomaly detec-

tion), the same anomaly detection framework and archi-

tecture may learn from any industrial network.

Additionally, network flow data requires minimum pro-

cessing before being employed in a mathematical model,

and model characteristics do not require separate process-

ing based on the network or the field-level protocols,

lowering implementation costs.

The fundamental contribution of this work is a Deep

Autoencoder-based NIDS framework that outperforms state-

of-the-art results from alternative supervised algorithms in a

more challenging learning environment. Furthermore, it

outperforms the results of Isolation Forest [20], a popular

approach to unsupervised anomaly detection. Despite the

fact that deep autoencoders have been employed previously,

we consider flow-based data from the perspective of an

Industrial control system, analysing and demonstrating its

suitability for a real-world deployment. Deep Autoencoders

enable us to work on an unsupervised learning approach,

allowing us to utilise the NIDS in real-world scenarios

where labels are normally not provided during the training

phase. Furthermore, without prior knowledge or significant

study of the characteristics of the devices from the Industrial

control system, the collection and preprocessing of network

flow features is feasible in any industrial network. This

enables the proposed NIDS to be deployed as a plug-and-

play solution to anomaly detection in ICS. Despite the fact

that network flow data contains less information than fea-

tures based on individual network packet payloads, the

proposed NIDS achieves excellent results in both a DDoS

attack dataset and a real-world environment. We exploit the

robustness, predictability, and repetitive patterns, that char-

acterise industrial network flows, to achieve a high detection

rate and a low False Positive rate. Furthermore, the NIDS

can detect the effects of an attack on the behaviour of

legitimate devices, allowing it to be used in critical infras-

tructures, where identification of malfunctioning equipment

due to a cyberattack is essential.

The major contributions of this work are summarised as

follows:

• This paper presents a cost-effective and scalable

Network intrusion detection system for industrial

control systems, based on network traffic features.

• We employ network traffic statistics to detect anoma-

lous behaviour from distributed denial of service attacks

on industrial situations, in contrast to earlier studies

examined on Sect. 2, by means of deep autoencoders,

an unsupervised Deep Learning approach.

• The proposed NIDS outperforms other approaches on

the same dataset. A detailed comparison of the deep

autoencoder results to Isolation Forest and state-of-the-

art results using supervised methods, is performed, and

information on the NIDS’s applicability for real-world

settings is provided.

• We showcase the performance of the proposed NIDS in

a real scenario, analysing its suitability in terms of

reported false alarms, data ingestion capabilities, and

real time performance.

The remainder of the article is organised as follows: Sect. 2

presents previous works on anomaly detection in Industrial

control systems using Machine Learning. Section 3 covers

autoencoder neural networks and how to use for anomaly

detection, introducing the chosen ensemble architecture of

activation functions. Section 4 describes the proposed

NIDS architecture, including the data collection and

ingestion technique as well as the anomaly detection

schema for real-world scenarios. The dataset used to assess

the performance of the deep autoencoder is presented in

Sect. 5, as well as the data filtering and feature extraction

approach, a description of the Isolation Forest algorithm as

the baseline model, and the model evaluation metrics.
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Section 6 compares the Deep Autoencoder’s performance

detecting different flooding attacks in an industrial envi-

ronment to Isolation Forest and state-of-the-art results, and

exposes the results of the proposed framework in a real-

world deployment. Finally, Sect. 7 summarises the key

research contents, successes, and conclusions, as well as

some future research prospects.

2 Related work

Due to the large diversity of devices and network protocols,

securing ICS is a difficult undertaking. While typical

security methods such as access control, encrypted com-

munications, and firewalls can be effective in preventing

basic attacks, they are not often used in industrial networks

due to the use of obsolete equipment and protocols. In

contrast, anomaly detection can detect ICS attacks by

comparing the change to a profile of the industrial system’s

regular operation. This profile can be built using a variety

of strategies and data sources.

The majority of research attention has been focused on

detecting anomalies in industrial device logs. [22] investi-

gated the use of process mining and compliance checking

analysis to detect abnormalities in ICS, allowing the iden-

tification of long-running attacks, which gradually disrupt an

industrial control system through a combination of anoma-

lous activity sequencing. [7] identify patterns from sensor

measurements and use them to categorise the status of an

industrial plant using logical analysis of data (LAD), a

combinatorial optimisation-based technique. [11] use plant

design knowledge to generate highly connected discrete and

continuous state variables. Then, using deep learning tech-

niques, they model the dynamics of sensors and understand

the functional connections between them using rule-based

machine learning algorithms to detect abnormalities in a

simulated water treatment facility (SWaT).

Deep autoencoders have recently been investigated in

[10]. The authors proposed training an autoencoder utilising

device data collected during normal operation, enabling for

high detection rates of single and multi-point attacks.

Although such implementation does not necessitate prior

knowledge of the infrastructure, it does necessitate some

understanding of how components are arranged in order to

reduce training complexity (improving the accuracy of the

model). [23] conducted a similar study using a dataset

gathered from a gas pipeline. The dataset includes network

information (such as IP addresses or packet length), MOD-

BUS protocol command payloads (as the MODBUS func-

tion code), and data measurements from industrial

equipment. They contrast the deployment of an autoencoder

with other common machine learning (ML) models,

emphasising the importance of appropriately establishing the

decision threshold on important infrastructures to avoid

False Negatives. Finally, in [30], an LSTM Autoencoder is

constructed, which learns a pattern of the industrial control

system by forecasting and reconstructing the input data and

taking into account the temporal correlations between the

various components.

Most research on the use of features generated from net-

work traffic to detect anomalies focuses on specific protocols

such as MODBUS/TCP or Profinet. The papers [12, 16, 34]

utilise network traffic to establish a pattern of conventional

MODBUS/TCP communications. [12] implement a deter-

ministic finite automaton (DFA) for each communication

between a human–machine interface and different pro-

grammable logic controllers (PLCs). [16] seeks to identify

bogus MODBUS orders by learning and storing a pattern of

typical traffic, taking advantage of ICS’s resilience and sta-

bility. [31] recently proposed memory augment based on

generative adversarial network (MeAEG-Net) where they

propose an abnormal Industrial IoT traffic detection model

based on generative adversarial networks to make the

anomaly detection framework more resilient against noise in

the training dataset. [32] propose a supervised NIDS based on

sparse autoencoders and random forest to achieve high

detection accuracy. First, the sparse autoencoder is used to

extract the features to train the supervised random forest

algorithm, employing an ANASYN over-sampling technique

to address the class imbalance in the NDS-KDD dataset.

Similar methodologies were examined on non-industrial

traffic in terms of current trends in anomaly detection on

information systems: [21] employ an autoencoder ensem-

ble architecture. From individual network packets, they

compute 23 statistical features. These features are com-

puted for different time windows, totalling 115 features.

Finally, they execute hierarchical agglomerative clustering

to construct distinct sub-instances, utilising correlation as

the distance measure in the clustering process to verify that

the grouped features capture normal behaviour. The

ensemble architecture is then created by training an

autoencoder for each cluster of features. [35] recently

described a similar strategy employing Variational

Autoencoders to detect anomalies on a traditional infor-

mation system, using the CICIDS2017 dataset. They sup-

port their research with network flow data, attaining AUC-

ROC values near 0.8 for specific attack scenarios. Our

NIDS obtains AUC-ROC values more than 0.96, rein-

forcing the use of network flow data and Deep Autoen-

coders as an appropriate approach to anomaly detection.

To summarise, the previous approaches have various

shortcomings, and either:

• Make use of a supervised environment.

• Expert understanding of the network’s specific infras-

tructure is required.
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• Make use of field-level protocol expert knowledge and/

or the precise actions performed by the devices.

• Employs complex features that necessitate considerable

processing during data gathering.

• Lacks a standardised approach that can be used across

various industrial networks.

• Are protocol-specific and do not generalise to other

networks or ICS.

• Do not analyse the performance of the proposed

approach in a real-world scenario.

According to [1], the main challenges of modern NIDS are

related to lower detection accuracy due to imbalance

datasets, low performance or non-demonstrated perfor-

mance in real-world environments, the use of expensive

computation methods that require a lot of processing and

computing resources, and the design of NIDS that fit the

specific needs of industrial and Internet of Things

environments.

To tackle these challenges, we propose an NIDS archi-

tecture based on network flow data that uses Deep

Autoencoder to learn the normal behaviour of an Industrial

Control System. Extraction of network flow features is

available in any network with minimal processing, allow-

ing the deployment of a probe for feature extraction in real-

time, lowering the cost and complexity of NIDS imple-

mentation. Furthermore, we can apply the same approach

to different ICSs without previous knowledge about the

network architecture or the intrinsic field-level protocols.

Regardless of how simple the model characteristics are, our

NIDS can learn enough about the behaviour of industrial

devices to improve state-of-the-art results. Furthermore,

our method outperforms the results obtained with isolation

Forest on the same dataset. We also showcase the perfor-

mance of the proposed NIDS in a real industrial environ-

ment from the alimentary sector, achieving a very low rate

of False positives, showing the suitability of the proposed

NIDS for real-world scenarios.

3 Anomaly detection using deep
autoencoders

Anomalies are ‘‘data points which do not conform to the

well-defined distribution of the normal behaviour’’ [6].

Given ICS’s repeated and consistent behaviour, we can

detect anomalies by developing a strong model of normal

operation and utilising deep learning (DL) to create a

representation of multi-dimensional data.

Deep learning, as a branch of machine learning, attempts

to learn data representations by stacking many non-linear

processing layers. DL focuses on learning from data

structure, capturing important statistical aspects. These

characteristics can be applied to classification, regression,

and other problems. In this paper, we will use Deep

Autoencoders in an unsupervised learning framework,

which are a type of feed-forward neural network with fully

connected hidden layers [3].

3.1 Autoencoder architecture

Autoencoders are made up of an encoder and a decoder that

have been trained to reproduce their input while minimis-

ing the reconstruction error. The encoder extracts features

from the input vector, while the decoder attempts to

recreate the same input using the learnt features, which

makes them suitable for anomaly detection by using fully

connected layers and introducing some constraints on the

learning process, which will be discussed below. Other

applications of autoencoders include sequence learning by

introducing long short-term memory (LSTM) neurons in

the autoencoder architecture, dimensionality reduction,

data generation through statistical inference (Variational

Autoencoders), or image denoising (Convolutional

Autoencoders).

Given an input vector xm�n
i with m observations and n

columns or features, being n the number of neurons on the

input and output layer, and l\n the dimension of the

learned features (number of hidden units). It should be

noted that there may be several hidden layers between the

encoder and decoder layers. If there are multiple hidden

layers, it is referred to as a Deep Autoencoder. The encoder

transforms the input vector x into a hidden representation

hjðj ¼ 1; . . .; lÞ through a non-linear mapping as follows:

hj ¼ r
Xn

i¼1

Wij � xi þ bj

 !
; ð1Þ

where r is a non-linear activation function (AF), typically

sigmoid or tanh, Wij is the weight between the i neuron in

the input and the j neuron in the output, and bj is the bias of

the j neuron in the hidden layer.

Then, the decoder maps the hidden (latent) representa-

tion back to the original representation:

exi ¼ r
Xl

j¼1

bW ij � hj þ b̂j

 !
: ð2Þ

The autoencoder tries to optimise the hyper-parameters to

minimise the reconstruction loss between x and its recon-

struction ex, commonly using the average reconstruction

error computed as the mean squared error (MSE) between

the original and reconstructed input, such that

minimise MSE ¼ 1

n

Xn

i¼1

jjxi � exijj2 w:r:t: h; ð3Þ
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being h the set of hyper-parameters h ¼ W ; bf g.
An autoencoder can detect anomalies if the model is

trained with (ideally) only normal data or data with a low

presence of attacks or abnormalities. The autoencoder will

learn a latent representation of the normal data, and the

reconstruction error jjx � exjj2 � 0.

We can calculate the Mean Squared Error between both

vectors to compute the difference between the recon-

structed output and the input, and then use the result as an

anomaly score. We can use the Deep Autoencoder to

perform binary classification if we set a threshold varphi

based on the reconstruction error obtained over a normal

dataset: values with a higher reconstruction error than the

threshold will be classified as anomalous, while values

with a lower reconstruction error will be classified as

norma. It is important to note that the Deep Autoencoder

training parameters must be tailored to each dataset or ICS.

In this work, we used a grid search strategy to set the

model hyper-parameters, such as the learning rate, the

number of hidden layers and neurons per layer. Figure 1

shows the resultant Deep Autoencoder layer and neuron

architecture obtained using the grid-search algorithm.

3.1.1 Activation functions

The choice of the activation function to utilise is essential

and has an impact on the training process. As previously

stated, Activation Functions are used to translate an input

to an output using gradient processing and a weighted sum

of the input and biases. Each AF has unique properties, and

depending on the input data and the neural network’s goal,

some functions are better suited for specific tasks. The use

of this AF will aid the objective function’s convergence,

hence speeding up the learning process. We employ an

ensemble design to mitigate each function’s downsides,

such as the dying neuron and vanishing gradients issues.

First, we use tanh as the AF in the first layer to take

advantage of its 0-centred output. For the hidden layers, we

add a sequence of relu layers to handle both the vanishing

gradient and dying neurons problems: [29] demonstrated

that a combination of both activation functions has a higher

performance than models with only tanh or relu, since tanh

provides values on �1; 1½ � range that help to address the

dying problem of the subsequent relu layers. At last, the

output layer is tanh, since relu is not recommended as AF

in the output layer.

4 Network IDS architecture

Because we wish to assess the suitability of an NIDS using

network flow data, we must first develop a data collection

technique that works for both static files (like those in a

public dataset) and online data gathering for real-world

scenarios.

According to [5], a network flow is a sequence of

packets from a source to a destination that gives statistical

information that can be used to characterise the properties

of network communications. In this paper, we suggest the

usage of Argus [24], a strong open-source tool that operates

as an superset of numerous flow data technologies (such as

Netflow, Jflow, Qflow, or IPFIX) and generates network

flow data regardless of the Layer 3 protocol employed.

Argus allows us to either transform static pcap files from a

certain dataset or capture network flow data in real time by

directly listening to a network port.

For static network datasets, we can build network flows

from a list of individual packets using the Argus toolkit. /

etc/argus.conf can be used to configure the set of features

to extract from the pcap file:

In a real-world environment, data network flows must be

generated continuously in order for the anomaly detection

framework to utilise them in training or prediction mode

(in our case, a Deep Autoencoder). Figure 2 depicts a

conceptual schema of our proposed NIDS architecture for

real-world deployment, in which the input data for the

anomaly detection framework is generated at the Argus

flow extractor and collected and outsourced in streaming

mode with Fluentd and Apache Kafka (Data ingestion).

We recommended to place the argus probe as low in the

Purdue Reference Architecture [33] as possible, at levels 2

or 3, to ensure full visibility of the industrial network traffic

before it reaches the IT architecture. It is worth to mention

Fig. 1 Resultant deep autoencoder architecture from the grid-search

algorithm, showing the number of neurons per layer, and number of

hidden layers
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that a single argus probe can be configured to listen to

multiple network interfaces, for example, to capture data

from multiple Virtual LANs.

Once data is generated, it can be kept in a long-term data

storage solution or ingested directly from Kafka into the

anomaly detection framework in an online manner. To

begin, we must train the Deep Autoencoder to recognise

the pattern of regular communications in the Industrial

Control System (Training Phase). Depending on the

peculiarities of the ICS, the amount of data collected must

be adjusted on a case-by-case basis. However, techniques

such as Early Stop Callbacks (included in most deep

learning libraries) can be used to immediately stop training

after the network has learned the pattern of normal ICS

communications, preventing overfitting. When the neural

network training is completed, the decision threshold

(varphi) is automatically calculated as the 95th quantile of

the reconstruction error obtained over a new set of normal

data. The anomaly detection system is now ready to

evaluate incoming network flows (Evaluation Phase): an

alarm will be raised if the reconstruction error of a specific

input vector exceeds the decision threshold.

Table 1 describes the features chosen for the proposed

NIDS. Our feature set contains the source and destination

IP and MAC addresses of each network flow, the network

protocol identifier according to the IANA specification

[14], the communication’s destination port, the number of

packets and bytes sent, the mean inter-packet arrival times

in a network flow, and the overall flow length. IP and MAC

addresses are included to be able to train a single Deep

Autoencoder for an entire network: otherwise, we would

need to train a different neural network to learn the legit-

imate behaviour of individual devices. In this way, we are

able to learn the behaviour of all the devices in the network

with a single model, which simplifies model maintenance

and deployment. In addition, it might allow the NIDS to

detect other types of cyberattacks besides DDoS, such as

IP/MAC spoofing attacks.

Fig. 2 Proposed NIDS conceptual diagram, detailing the network flow extraction, data ingestion and training and evaluation procedure

Table 1 Feature set description

and data types
Feature name Description Data type

srcip Source IP address of the flow IP

smac Source MAC address of the flow MAC

dstip Destination IP address of the flow IP

dmac Destination MAC address of the flow MAC

proto Protocol used in the communication Integer

dport Destination port of the flow Integer

dpkts Destination to source packets sent Integer

dbytes Destination to source bytes sent Integer

spkts Source to destination packets sent Integer

sbytes Source to destination bytes sent Integer

pkts Total packets sent Integer

bytes Total bytes sent Integer

dur Flow duration (in seconds) Float

sintpkt Source to destination inter-packet arrival time Float

dintpkt Destination to source inter-packet arrival time Float
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Because neural networks require numerical character-

istics, we must transform all non-numerical values in the

input vector to numeric equivalents and prepare them for

use in a mathematical model (Data Normalisation). In

Python, for example, the ip parameter of the IPAddress

object provides the numeric equivalent of an IP address.

For OSI Layer 3 protocols (such as ICMP) which do not

have a dport value, argus automatically assigns a fixed

value. In the case of ICMP flooding attacks, where the

attacker sends ICMP echo request packets, argus assigns to

the dport variable a fixed value.

Once the dataset has been transformed to its numerical

counterpart, data normalisation is required to ensure that all

characteristics (with varying sizes or value ranges) con-

tribute equally to the model. Furthermore, feature scaling

helps the model’s converge to an optimal value by

removing the mean and scaling each feature according to

the interquartile range, as well as normalising each feature

to be in the 0; 1½ � range.1

5 Experimental setup

This section introduces the dataset used to assess the Deep

Autoencoder’s feasibility for anomaly detection. We also

present the data preprocessing and filtering procedure used

to obtain the necessary network flow features. Furthermore,

the performance metrics used to evaluate the autoencoder’s

performance on each of the scenarios are introduced, with a

focus on their suitability for performing an exact evaluation

of the generated results.

5.1 Dataset description

The Cyber-security ICS dataset from the University of

Coimbra [9] is used to assess the viability of our Deep

Autoencoder. The dataset was created on a small-scale

process automation scenario employing MODBUS/TCP

equipment for research on the application of machine

learning approaches to cyber-security in Industrial Control

Systems. The dataset consists of normal operating traffic as

well as a variety of Distributed Denial of Service (DDoS)

attacks launched against the testbed.

The primary goal of Denial of Service attacks is to

degrade the network’s quality or availability. If the attack

is launched from numerous machines at the same time, it is

considered distributed. Depending on the network and the

underlying device type, these attacks might disrupt or delay

production lines, affecting the regular behaviour of

industrial devices. There are three forms of DDoS attacks

in this dataset: MODBUS query flood, TCP SYN flood, and

Ping flood:

• MODBUS query flooding occurs when an attacker

attempts to interrupt communications between legiti-

mate devices by delivering fraudulent requests, in this

case, false MODBUS query packets, to the victims.

This exploit can disrupt the device’s normal operation if

the number of bogus MODBUS packets overwhelms

legitimate packets [4].

• TCP SYN flooding: exploits the TCP protocol’s three-

way handshake: the victim gets a SYN message to

establish a TCP connection and replies with an SYN-

ACK, keeping an open port open and waiting for the

confirmation ACK packet. The attacker, however, never

responds with an ACK message, forcing the victim to

keep a port open until the connection ends [13]. The

attacker sends millions of SYN packets to the victim in

an attempt to exhaust all available ports, preventing

genuine devices from connecting to the target server.

• Ping flooding: Similar to MODBUS query flooding, the

attacker’s goal is to interrupt normal communication by

sending bogus Internet Control Message Protocol

(ICMP) ping packets to the victim [4].

5.2 Dataset preparation

The Cyber-security ICS dataset [9] contains both normal

operating data and a set of DDoS attacks. The dataset is made

up of several traffic captures (pcapfiles). It includes a group of

files in which no attacks were carried out and just regular

operation data was gathered. Furthermore, the authors carried

out each of the three flooding attacks for varying lengths (1, 5

or 15 min) over traffic captures of 30 min and 1 h. It repre-

sents a total of eighteen attack scenarios, eachwith a particular

mix of malicious and legitimate behaviour, and the class

imbalance factor becomes more aggressive as the attack

length increases (see Table 2).

Our Deep Autoencoder model is trained unsupervised,

using only the set of normal operation data without the

presence of an attacker, but without training labels. The

training data contains 158 686 network flows and spans 7 h

and 30 min of regular operation. We will choose a random

split of 80% of the normal data set to utilise as the training

set. The remaining 20% will be used to establish the

decision threshold, making predictions over this subset of

normal operation data: if the neural network is well trained,

the reconstruction error should be low, and the decision

threshold for detecting anomalies can be set as the 95th

quantile of the reconstruction error.

To evaluate the performance of the Deep Autoencoder,

we will use the DDoS attack dataset (which contains both

1 It is worth to mention that the same scaling parameters must be

used to normalise the training dataset and the new data to be

evaluated.
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normal operation and attack data) as our test set: first, we

filtered the dataset to separate the actual attack packets

from the normal operation data based on the MAC address

of the attacker and/or the period when the attack was taking

place.

5.3 Isolation forest for anomaly detection

In this paper, we will employ Isolation Forest [20] as a

baseline model to test performance and discuss the Deep

Autoencoder results. Isolation Forest (IF) is an unsuper-

vised machine learning approach based on decision trees

and random forests theory. Because of its ability to handle

high-dimensional data, it is one of the most often employed

models in anomaly detection situations. The key idea

behind IF is that anomalous samples should be scarce and

significantly different from the rest of the data, making

them susceptible to isolation.

Although the authors of IF propose t ¼ 100 and psi ¼
256 as the default configuration for the method, a grid

search over several subsets of the data was performed to

determine the best acceptable hyper-parameters for this

case. Based on our findings, t ¼ 50 and psi ¼ 8192 were

chosen as the settings for all tests to be performed. The

underlying theoretical reason for setting this threshold to

0.5 is that the average path length for a data point implies

an anomaly score of 0.5, so abnormal values (shorter path

lengths) are expected to result in higher anomaly scores

than 0.5 [2, 28], whereas normal samples are expected to

result in lower anomaly scores than 0.5 [20].

5.4 Model evaluation metrics

The performance of the Deep Autoencoder implemented

for anomaly detection is determined by how well the model

performs on new data. True Positives (TP), False Positives

(FP), True Negatives (TN), and False Negatives (FN) are

the four categories of model evaluation results for a par-

ticular threshold. The algorithm’s output is correct if it

correctly classifies an attack as such (TP) or a normal

operation as such (TN), whereas wrong classifications are

an attack classified as a normal operation (FN) or a normal

operation classified as an attack (FP), based on a specific

decision threshold.

From these values, we can derive additional metrics

such as the accuracy (amount of instances, both positive

and negative, classified correctly), precision (how many

instances predicted as positive were attacks or the ratio of

instances correctly classified as attacks), or recall (how

many instances, out of all the true attack instances we have

classified as positive). In imbalanced datasets, however, it

is easy to achieve a high accuracy score by assigning all the

samples to the majority class (in our case, as attacks).

Unlike accuracy, the rates of TP (sensitivity, TPR) and TN

Table 2 Characteristics of the

different attack scenarios

considered in the dataset: attack

duration, capture duration and

contribution of each class to the

total number of samples per

experiment

Attack Attack Dur. (min) Capture Dur. Attack % Normal %

MODBUS query flooding 1 30 min 56 44

5 88 12

15 97 3

1 1 h 79 21

5 95 5

15 98 2

TCP SYN flooding 1 30 min 12 88

5 39 61

15 62 38

1 1 h 7 93

5 23 77

15 46 54

Ping flooding 1 30 min 51 49

5 84 16

15 94 6

1 1 h 78 22

5 94 6

15 98 2
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(specificity, TNR) evaluate performance for each class

independently, and class imbalance has no effect on them.

TPR and TNR provide a measure of how both classes are

correctly classified. They do not, however, take into

account the proportion of examples assigned to a specific

class. This component can be assessed using precision and

recall, however those metrics are only applicable to the

positive class [15].

If we wish to evaluate the model using a single metric, we

can combine the rate of TP and TN, as well as precision and

recall. The Geometric Mean (G-mean) takes into account the

relative balance of the classifier’s performance onboth classes

and is defined as a function of the rate of TP and TN [18]. On

the other side, the F-Score, which computes the weighted

harmonic mean of both values, can be used to combine pre-

cision with recall. We can use metrics that compute how

effectively a classifier performs at separating classes to

analyse the model regardless of the decision threshold. These

metricsmake no assumptions about the distribution of classes.

One example is the Receiver Operating Characteristics

(ROC), which calculates the True Positive Rate and the False

Positive Rate for all possible thresholds and plots the potential

couples in a curve [17] (the ROC Curve). We have a single

metric to evaluate how the model performs for each threshold

if we compute the Area Under the Curve (AUC). AUC of 1

denotes a perfect classifier, whereas 0.5 represents the lowest

possible model (a model with no skill).

ROC analysis evaluates what can happen in various

class imbalance circumstances, allowing us to choose the

model with the best True Positive Rate and False Positive

Rate. The precision-recall curve is an alternative to ROC

curves: it computes the precision and recall values for a

series of thresholds, measuring the trade-off between cor-

rectly classified positive values and the number of miss-

classified negative instances, but it is again focused on the

positive class and affected by class imbalance. AUC is an

efficient way to assess a classifier’s overall performance

and to compare it to other algorithms. This is especially

true in the case of extremely imbalanced datasets, where

accuracy is skewed toward the positive class [15].

We are dealing with various levels of data imbalance in

our experiments (as discussed in Sect. 5.2), therefore the

results of each metric must be evaluated properly. Fur-

thermore, we cannot use a single metric to analyse all

scenarios, hence a more extensive study based on multiple

metrics is required.

6 Results and discussion

Using the training set, we trained a single Deep Autoen-

coder model to learn the regular pattern of ICS commu-

nications. We trained and evaluated the neural network

using a Lenovo Thinkbook with 16GB of RAM and an

Intel(R) Core(TM) i7-10510U CPU running at 1.80GHz-

2.30GHz. The model was implemented using the Keras2

and Tensorflow3 libraries for Python. The training set has a

sample size of 126949, and the neural network training

took 7.1 min with 50 epochs and a batch size of 128. The

Deep Autoencoder performs very well, thanks to its simple

architecture with a restricted number of neurons and hidden

layers, as well as the usage of few features (see Fig. 1). In

Sect. 6.1, we compare the Deep Autoencoder’s perfor-

mance when identifying different DDoS attacks from the

test set to Isolation Forest and state-of-the-art results. Then,

on Sect. 6.2, we show the performance of the suggested

NIDS in a real industrial environment from the alimentary

sector.

During the Deep Autoencoder model training, we

automatically compute the decision threshold value as the

95th quantile of the reconstruction error, which in our

experiments corresponds to u ¼ 2:973 � 10�4. We compute

multiple threshold-based metrics, as well as the AUC of

both the ROC and PR curves, for each evaluation experi-

ment with the test set. As previously stated, the dataset is

made up of eighteen experimental setups with varying

degrees of class imbalance.

6.1 Experimental results

Two factors must be considered in Critical Infrastructures

and Industrial Control Systems. First, because the attacks

may influence the physical operation of the devices and

hence have real-world effects, False Negatives must be

avoided. Second, it is critical to identify not only the

presence of an attacker, but also the repercussions of the

attack on legitimate devices that may have an impact on the

physical environment. This is the case with MODBUS

query flooding attacks, which disrupt the operation of

legitimate devices.

Table 3 shows the main metrics related to the perfor-

mance of the Deep Autoencoder and the Isolation Forest

baseline model across all the considered DDoS attack

scenarios. A detailed view of the results achieved by the

Deep Autoencoder and Isolation Forest (including other

metrics of interest) can be found on Appendix We can see

how the proposed NIDS can detect not only malicious

behaviour from the attacker, but also anomalous behaviour

of legitimate devices as a result of the attack, obtaining a

high True Positives Rate (TPR) of over 0.988 across all

scenarios. When compared to the IF performance (where

the lower TPR is 0.303), we see that this method is not as

capable as the Deep Autoencoder in detecting deviations

2 https://keras.io/.
3 https://www.tensorflow.org/.
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from regular device operation, specially for modbus query

flooding attacks. The Deep Autoencoder also performs

exceptionally well in terms of avoiding False Negatives,

with a maximum false negative rate (FNR) of 0.015 and

perfect detection of TCP SYN and ping flooding attacks.

The low FNR illustrates the viability of the suggested

method in a critical infrastructure scenario where avoiding

False Negatives is crucial: the maximum FNR across all

scenarios for the Deep Autoencoder is 0.015. This criteria,

on the other hand, is not met by IF in the MODBUS query

flooding attacks, where IF achieves a minimum rate of FN

of 0.212.

The Deep Autoencoder’s low rate of False Negatives

validates the algorithm used to calculate the decision

threshold as a factor of reconstruction error: an appropriate

strategy for anomaly detection on Industrial Control Sys-

tems is to determine the threshold by generating predic-

tions on a set of normal operating data. While focused on

recognising the attack behaviour, an automatic and unsu-

pervised threshold was able to effectively differentiate the

attack from regular behaviour (at the fall-out of raising

some false alarms). However, one of the key disadvantages

of IF is the lack of flexibility that adopting a constant

default threshold may imply, given that it may not be the

best solution in all situations. Furthermore, in the case of

larger datasets, setting this threshold dynamically is an

expensive operation that is still under investigation [19].

We can use the AUC-ROC to study how well the Deep

Autoencoder performs in terms of False Positives and True

Positives: for all instances, the Deep Autoencoder achieves

very high values (over 0.962), demonstrating that it can

perform very well in terms of True Positives and False

Positives. The minimum value of this metric for IF is

0.993: IF performs well identifying the attack class, but at

the expense of reporting a lot of False Negatives.

The analysis of precision-recall values (and thus the

AUC-PR metrics) yields the following results: the Deep

Autoencoder achieves AUC-PR values above 0.849. The

minimum value for this metric is achieved on the 1-min

TCP SYN flooding attack across a 1-h traffic capture,

which has only 7% of positive samples, and therefore the

precision metric is impacted. When we look at the results

Table 3 Summarised results achieved with deep autoencoder and isolation forest for different DDoS flooding attacks

Deep autoencoder Isolation forest

Attack Attack Dur. (min) Capture Dur. TPR FNR AUC-

ROC

AUC-

PR

TPR FNR AUC-

ROC

AUC-

PR

MODBUS query flooding 1 30 min 0.988 0.012 0.983 0.988 0.762 0.238 0.993 0.951

5 0.988 0.012 0.981 0.998 0.788 0.212 0.993 0.990

15 0.985 0.015 0.976 1 0.786 0.214 0.994 0.999

1 1 h 0.992 0.008 0.965 0.991 0.784 0.216 0.996 0.955

5 0.988 0.013 0.964 0.998 0.766 0.234 0.995 0.992

15 0.99 0.010 0.965 1 0.764 0.236 0.996 0.997

TCP SYN flooding 1 30 min 1 0 0.986 0.896 1 0 0.999 0.749

5 1 0 0.980 0.967 1 0 0.999 0.836

15 1 0 0.990 0.993 1 0 0.999 0.808

1 1 h 1 0 0.989 0.849 0.303 0.697 0.999 0.769

5 1 0 0.984 0.947 1 0 1 0.819

15 1 0 0.989 0.988 1 0 1 0.664

Ping flooding 1 30 min 1 0 0.988 0.988 1 0 0.999 0.289

5 1 0 0.986 0.997 1 0 0.999 0.731

15 1 0 0.986 0.999 1 0 0.999 0.777

1 1 h 1 0 0.966 0.990 1 0 1 0.154

5 1 0 0.970 0.998 1 0 1 0.546

15 1 0 0.962 0.999 1 0 1 0.77

The values in bold highlight the most relevant value per metric that are discussed in this section
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obtained by IF, we see a similar pattern, the AUC-PR

measure is influenced more severely by the imbalance

towards the negative class, with a minimum AUC-PR value

of 0.154. As a result, we can consider that the Deep

Autoencoder is more resistant to flooding attacks, with very

high values in the AUC-PR metric for all the scenarios

evaluated.

At last, we can compare the performance of the pro-

posed Deep Autoencoder to other approaches Using the

same dataset. The authors of the Cyber-security ICS dataset

[9] performed a comparative analysis in a supervised

training framework with four different classifiers: k-Near-

est Neighbours (kNN), Support Vector Machine (SVM),

Decision Tree (DT), and Random Forest (RF), using a total

of 68 features extracted from the raw pcap files, such as

packet timestamps, inter-packet arrival times, binary fea-

tures defining which protocols were involved, and every

field of the Ethernet, ARP, IP, ICMP, UDP, TCP and

MODBUS over TCP headers [8].

They trained the classifiers to learn from both normal

and attack behaviour (70 percent of the entire data was

used for training) and evaluated the classifiers’ ability to

recognise such patterns. For each scenario, several training

and testing experiments were carried out to examine how

the increase in capture size and attack time influences the

models. However, a supervised training environment dif-

ficulties the use of their approach in a real-world envi-

ronment, where labels are usually not available. It is

important to note the differences between the two

approaches: we trained our system once in an unsupervised

fashion, using only normal operation data, then tested it

against each attack scenario independently. As a result, the

training environment is different, as is the class imbalance

factor. Furthermore, the dataset authors trained several

classifiers with up to 68 features (including all of the

protocol-level variables collected from the pcap files), but

we only employed fifteen network-based features.

The supervised classifiers reached accuracy values of

over 0.6 in certain scenarios, but as discussed in Sect. 5.4,

this is a misleading result due to the dataset’s imbalance

factor increasing as attack time increases. In [8] a similar

situation can be seen with the F1-Score: the F1-Score value

decreases for the 5 min attack scenarios (from close to 1.0

to around 0.7, depending on the algorithm and attack) and

then increases to close to 0.9 for the 15min attack experi-

ments, because the classifiers have more data for training.

The performance deterioration on the MODBUS query

flooding attacks is not as aggressive, but an investigation

by the authors determined that the improved results were

caused by a feature with limited variance during the

attacks, allowing all the methods to detect them quickly.

This field is not in our feature set and has no effect on our

experiments.

Our Deep Autoencoder performs better in this aspect, an

is not as affected by class imbalance. The F1-Score values

remains more stable with class imbalance: the bottom value

for this measure is 0.8 on certain scenarios with significant

class imbalance, and remains close to 0.9 on others, and

does not suffer from performance degradation as attack

time increases.

Table 4 summarises the benefits and shortcomings of

each analysed algorithm: our Deep Autoencoder outper-

forms all unsupervised (IF) and supervised approaches on

both accuracy and F1-Score (as shown on the detailed

results in Appendix), and has a high detection rate while

maintaining a very low rate of False Positives, which

makes it adequate for real scenarios given a large enough

dataset. However, more metrics would be required to

provide a deeper comparison between our Deep Autoen-

coder and the supervised classifiers, since the accuracy and

F1-Score are insufficient to evaluate the performance of the

classifiers in all cases. For example, the precision and recall

numbers achieved by the Deep Autoencoder (which have a

higher variability with attack duration since they are

Table 4 Summarised benefits and shortcomings of each analysed algorithm, including our implementations and the proposed classifiers from [8]

Algorithm Unsupervised High detection

rate

Limited

FP

Appropriate for real

scenario

Affected by class

imbalance

Requires large

dataset

Deep

autoencoder

• • • • •

Isolation forest • • • •
kNN •
DT • • •
RF • • •
SVM •
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exclusively focused on the positive class) cannot be com-

pared to the state-of-the-art results. However, the Deep

Autoencoder is proven to be more resilient than IF and the

supervised classifiers against class imbalance, since it is

trained on the normal class only. To the best of our

knowledge, there are no other unsupervised approaches

using the Cyber-security ICS dataset from the University of

Coimbra that we can compare with our proposed approach.

6.2 Application to a real industrial scenario

The obtained results using a simulated dataset support the

viability of a Network Intrusion Detection System based on

a Deep Autoencoder on network flows for its use in a real-

world environment: the anomaly detection framework

reported extremely few False Negatives and False Positives

in the experimental scenario. In this section we show how

the proposed NIDS can be successfully applied to a real

industrial scenario from the alimentary sector. To do so, we

deployed the data acquisition, processing and anomaly

detection infrastructure detailed on Sect. 4 in the opera-

tional network to collect network flows in real time. This

will allow us to evaluate the performance of the anomaly

detection framework, and to evaluate the suitability of the

data acquisition, preprocesing and filtering procedure in a

real time setting. However, since we are evaluating the

NIDS in a real environment, we were not able to execute

specific cyberattacks that might impact the operation of the

real devices, and we are not aware of any anomalous

behaviour or cyber-attack happening during the evaluation

of the NIDS. Therefore, we will focus on analysing the

ability of the anomaly detection framework to learn the

normal behaviour of the industrial devices, studying the

alarms reported to analyse the amount of False Positives.

First of all, argus flow extractor was connected to the

span port of the main network switch, on the operational

network of the industrial plant, to capture network flows in

near real time. The designed network probe using argus,

Fluentd and Apache Kafka was able to handle the amount

of data generated by the industrial environment, producing

4000 network flows per minute, and redirecting the data

into the anomaly detection framework by reading the net-

work flows in near real time from Apache Kafka, and they

were successfully retrieved without disrupting the ICS’s

normal operation. The network flows were also stored in

OpenDistro4 for latter analysis. It is worth to mention that

this OT network only required the deployment of one argus

probe, but if needed argus can be configured to listen to

multiple network interfaces at the same time (for example,

to capture traffic from different Virtual LANs), or multiple

argus probes can be deployed in large networks to capture

network flows in an scalable and distributed way.

Focusing on the anomaly detection framework, we

trained the Deep Autoencoder with 3 h of data collected in

near real time from the network probe, generating a total

sample of size nt ¼ 226365, which conforms our training

set Xtrain. Since we aim to minimise the amount of False

Positives, we set the decision threshold as the 99th of the

reconstruction error obtained over a 10% random sample of

Xtrain, which corresponds to u ¼ 0:0670714903655881.

Once the Deep Autoencoder was trained, we deployed it

to perform predictions for two consecutive days. Table 5

summarises the results achieved in this scenario. We will

focus on the amount of reported alarms (False Positives) to

analyse the suitability of the proposed NIDS in a real-world

industrial scenario. We will analyse two different envi-

ronments: first, we will analyse all the TCP, UDP and

ICMP network traffic to determine the amount of reported

anomalies. Second, we will focus on the most common

industrial protocols running on the network (see Fig. 3), by

filtering the network traffic to those network flows with

destination port 102 and 502, which corresponds to

industrial protocols S7Comm, a Siemens proprietary pro-

tocol used by PLCs of the Siemens S7-300/400 family [26],

and MODBUS TCP, which is commonly used for super-

vision and control of automation equipment, allowing the

use of MODBUS messaging in an ‘Intranet’ or ‘Internet’

environment using the TCP/IP protocols [27].

In the first scenario, the NIDS reported a total of 70686

positives over 2 days, representing a 1:135% of False Posi-

tives. This is a very positive result, which validates the use of

our proposed methodology for anomaly detection in a real

scenario. The percentage of False Positives close to 1% is the

expected one when using a threshold calculated at the 99th

quantile of the reconstruction error, since we are allowing the

NIDS to consider the remaining 1% as possible outliers in the

training set. The False Positive rate is slightly higher than the

achieved on the DDoS dataset, but this is expected in real-

world scenarios. Studying the reported false alarms, we found

out that most of themwere related to information layer traffic.

Figure 3 shows the number of network flows per destination

port in the training set, and the number of anomalies detected

per network protocol and destination port.

Most of the False Positives (91.99%) are reported on

UDP traffic (protocol number 17), whereas less than 8% of

Table 5 False positives reported on two different scenarios of the real

industrial plant

Scenario No. of samples No. of FP FPR (%)

ICMP UDP TCP 6230517 70686 1:1345

MODBUS S7Comm 2106415 10 0:0005

4 https://opendistro.github.io/for-elasticsearch/.
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the FP are related to TCP traffic (protocol number 6), and

less than 1% to ICMP (protocol number 1). Focusing on the

UDP anomalies, we can observe how 84:19% of the

reported False Positives are related to UDP port 5000,

which in this case it corresponds to VMWare related traffic.

The next bucket corresponds to UDP port 1900 (5:76%)

which is generated by SSDP multi-cast queries to the IP

address 239.255.255.250 executed by Windows devices

(such as SCADAs or HMIs). In the case of anomalous TCP

traffic, most of it (19.4%) is on port 7680 which is related

to Windows Update Delivery Optimization queries.

Therefore, most of the False Positives is network traffic

related to IT services, and can be filtered from the NIDS

scope. This leads to our second analysis scenario, were we

focus on the two main industrial protocols used in the

network: Modbus and S7comm protocols. In this case, the

amount of reported False Positives is much lower, report-

ing only 10 false alarms which represent a 0:0005% of the

total network traffic.

These results validate the use of the proposed NIDS for

anomaly detection on real-world ICSs: we can train an

anomaly detector on the entire network traffic, and use it to

detect DDoS cyberattacks on the operational network with

high accuracy and a very limited amount of false alarms.

7 Conclusions

This study describes a network intrusion detection system

(NIDS) architecture, that is supported by a deep autoen-

coder for anomaly detection, and is trained using only

normal data and network flow features. Our Deep

Autoencoder model has a high performance in many DDoS

attack scenarios, improving the results from the state-of-

the-art, and a baseline model, in a more challenging sce-

nario. Our approach also has a low rate of both, False

Negatives and False Positives, indicating that it is suit-

able for application in real-world scenarios.

We have derived fifteen network flow features that can

be easily extracted from any network with minimum data

processing. The most common approach in the state-of-the-

art is the use of device logs, but they require extensive

processing and background knowledge of the industrial

scenario. We have described and evaluated a NIDS, cap-

able of detecting both DDoS attacks and their effects on the

behaviour of the industrial devices, by only using network

flow features. This lowers the requirements to process and

combine data sources with varying characteristics, such as

device logs and/or network protocol fields, which can

change across industrial networks and scenarios; making

our proposal suitable for a production environment.

Unlike other works in the literature, we show the suit-

ability of the proposed NIDS in a real industrial plant from

the alimentary sector. We have designed, described and

applied a data gathering, filtering and preprocessing strat-

egy, that makes use of open-source tools, enabling a pas-

sive data collection approach, suitable for different network

topologies; without interfering with the functioning of its

industrial devices, allowing complete visibility of the ICS

network in a scalable and distributed manner. Our proposed

NIDS achieved a very low rate of False Positives, enabling

its use for cyberattack and anomaly detection on real-world

ICSs.

Future work includes the correlation and grouping of

similar alerts provided by different devices in order to

avoid multiple alerting, which could overwhelm an oper-

ator receiving the alarms. Furthermore, we want to explore

the explainability of the model, concerning the results and

the attack classification, once an anomaly has been

detected.

Fig. 3 Percentage of network flows per destination port in the training set (left) and percentage of detected anomalies per protocol and destination

port in the test set (right)
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Appendix

See Tables 6 and 7.

Table 6 Detailed experimental results achieved with Deep Autoencoder for different DDoS flooding attacks

Attack Attack

Dur.

(min)

Capture

Dur.

TN FP TP FN Precision Recall TPR TNR FPR G-

Mean

F1-

Score

AUC-

ROC

AUC-

PR

MODBUS

query

flooding

1 30 min 11159 257 14267 179 0.982 0.988 0.988 0.977 0.023 0.983 0.985 0.983 0.988

5 8738 227 71954 879 0.997 0.988 0.988 0.975 0.025 0.981 0.992 0.981 0.998

15 2464 84 219933 3308 1 0.985 0.985 0.967 0.033 0.976 0.992 0.976 1

1 1 h 3456 226 13555 115 0.984 0.992 0.992 0.939 0.061 0.965 0.988 0.965 0.991

5 3084 197 71978 909 0.997 0.988 0.988 0.940 0.060 0.963 0.992 0.964 0.998

15 2643 170 213755 2192 0.999 0.990 0.990 0.940 0.060 0.964 0.995 0.965 1

TCP SYN

flooding

1 30 min 11320 315 1200 0 0.792 1 1 0.97 0.03 0.986 0.884 0.986 0.896

5 10151 420 5996 0 0.935 1 1 0.96 0.04 0.980 0.966 0.980 0.967

15 11151 238 17957 0 0.987 1 1 0.98 0.02 0.989 0.993 0.990 0.993

1 1 h 22844 520 1197 0 0.697 1 1 0.98 0.02 0.989 0.822 0.989 0.849

5 21920 705 5985 0 0.895 1 1 0.97 0.03 0.984 0.944 0.984 0.947

15 21212 457 17948 0 0.975 1 1 0.98 0.02 0.989 0.987 0.989 0.988

Ping

flooding

1 30 min 11626 283 11937 0 1 1 1 0.976 0.024 0.988 0.988 0.988 0.988

5 11556 337 58762 0 1 1 1 0.972 0.028 0.986 0.997 0.986 0.997

15 11504 324 176653 0 1 1 1 0.973 0.027 0.986 0.999 0.986 0.999

1 1 h 3497 253 11937 0 1 1 1 0.933 0.067 0.966 0.990 0.966 0.990

5 3535 228 59704 0 0.996 1 1 0.939 0.061 0.969 0.998 0.970 0.998

15 3457 288 179152 0 1 1 1 0.923 0.077 0.961 0.999 0.962 0.999
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